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I. INTRODUCTION

The theory presented in this report is intended to

represent the behavior of solids which exhibit irreversible

straining - e.g. plastic strain. Irreversible straining of

a material is a consequence of microstructural mechanisms,

the operation of which may be understood but difficult to

represent theoretically for a real material. It is presumed

that for a continuum theory of thermal statics the effects

of the microstructural deformation mechanisms can be repre-

sented by a continuous substate variable (or variables).

Only principles of continuum mechanics (including thermal

effects) are invoked in the postulates and following analysis;

no kinetic models of microstructural mechanisms are assumed.

By this approach it is hoped that the results presented will

have general utility - within the confines of the theoretical

postulates.

At the foundation of the theory are the assumptions that

the local equilibrium state of a material is completely

characterized by three variables - the deformation gradient,
the entropy, and the substate variable - and a caloric equation

of state exists. Further, it is assumed that a continuous

curve in equilibrium state-space can represent a process; it

follows that such processes are independent of rate effects

such as viscosity. Also the concept of approach to equilibrium

states from nonequilibrium states, used frequencly in related

theoretical developments, has no place in the present theory.

Other researchers have used substate variables in the develop-
ment of continuum theories, but those theories all differ in

some important aspects from the present one. Examples of such

developments are represented by the papers of Kratochvil and
Dillon (1 ) and RiceM who treat elastic-plastic behavior, and

Coleman and Gurtin (3) who treat the thermodynamics of nonlinear

material.



The theory has potential for the study of microstructural

mechanisms which can be described in terms of metastable states.

In the present theory one may interpret the phrase "equilibrium

state" with the meaning usually associated with the phrase
"metastable state," and an equilibrium process represents a

process in a space of metastable states.

Although kinetic models of microstructural mechanisms

have not been used in the development of the theory to date,

a qualitative description of the mechanisms, which the substate

variable may represent, is helpful for intuitive reasoning. Also

a quantitative mic-ostructural model (used in conjunction with

the present theory) eventually may lead to the improved under-

standing of the behavior of particular materials. Perhaps

the best known examples of such mechanisms in solids are the

motion of dislocations in metals(1,2) and the stable growth

of microcracks in ceramics.
(4 )

In Section II (Preliminaries) some concepts of continuum

mechanics and mathematical analysis are presented briefly. The

postulated theory, titled Definition of Stable Equilibrium, is
presented in Section III (Precepts of Equilibrium Theory).

The remainder of this section is devoted to further analysis

of the caloric equation of state; no new postulates are

introduced. In Section IV (Global Stability) two types of

stability are defined: Global Adiabatic Stability, and Global

Adiabatic Mechanical Stability with Fixed Boundary. Some

theorems of dimensional invariance and a relationship between

global stability and equilibrium state are proven. There are

many more properties of the equilibrium region which can be

deduced with no additional postulates. Some of these ideas

are discussed in Section V (Concluding Remarks), but their

development must be left for the future.
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i. PRELIMINARIES
This section is but a brief discussion of a few concepts

of continuum mechanics and mathematical analysis which are

used in the following sections. Comprehensive presentations
of the subjects can be found in the books of Truesdell and

Toupin,(5) Truesdell and Noll, (6) Apostol, (7) and Zukerberg. (8)

Generally, direct notation is used throughout this report.

A tensor (Aij) is represented by A The product of two tensors

ABT represents AikBjk and trABT represents AijBij
AJ

Symbols e , 0 , T, ... represent functions whose values are

e, ,T

The deformation gradient (F) is taken as the description

of strain in this report. Let X (or XK) denote material
coordinates and x(or xi) denote current coordinates of a body.

In this description X represents a particle and x a position.
In particular, let X represent the coordinates of the body in

a reference configuration. A deformation of the body is completely

described by

x= i(X) (It-I)

and the deformation gradient is

LW F x XW (11-2)
FiL  Fi (X  -x (X

It follows Eq. (11-2) that F transforms as a vector

under a change of current coordinates and as a vector under a

change of material coordinates. F may also be considered as
a second-order tensor with the use of Euclidean shifters

(gL) ; e.g. the components of F relative to material coordi-
nates are

FKL K Fi L (11-3)

3
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F will be considered a second-order tensor, or equiva-

lently as a linear operator on E, and generally the material

(coordinate) description will be assumed in this report.

It follows the permanance of matter that

0 < det F < (11-4)

and it follows Ineq. (II-4) that F is invertible.

The polar decomposition theorem insures that F has

the following unique decomposition:

F = RU (11-5)

where R (the rotation tensor) is proper orthogonal,

RTR= I

det R = + 1 (11-6)

and U (the right stretch tensor) is symmetric and positive

definite.

Furthermore, under a change of reference frame (not a

change of coordinates) F,R,U transform as follows

F' = QF

R' = QR

U' = U (11-7)

where Q , an orthogonal tensor, characterizes the frame change.

Under a change of reference configuration (again not a change

of coordinates) F,R,U transform as follows

F' =FH

R' =RHT

U1 IlTUI -  (11-8)
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where R , a second-order tensor, 0 < det H < , represents

the change of reference configuration.

Equations (11-7), (1I-8) present precisely the meaning
of the following: F and R transform as vectors under a change
of reference frame and as vectors under a change of reference

configuration; U transforms as a tensor under a change of
reference configuration.

The principle of reference frame indifference states that
constitutive equations must be indifferent to the reference
frame. It is important to note that for constitutive equations,

there is no principle of reference configuration indifference.

The measure of stress used in this report is the first

Piola-Kirchhoff stress tensor (TR), which is defined in terms

of the Cauchy stress tensor (T) as follows:

TR JTF-1T  (11-9)

where J is the ratio of the current material density (p) to
the material density in the reference configuration. The
quantity (l/PR)(TR) transforms as a vector under a change of
reference frame and as a vector under a change of reference

configuration.

Consider the set of all second-order tensors in 3-dimensions
with elements A (or AKL). It follows that A-space is the
space of linear operators defined on E3 ,; therefore A-space
is a real vector space with vector product:

Al, A2 e A-space =A 1 A2 e A-space

and A1 e A-space OAl e A-space (11-10)

Also define the inner product of Al, A2 e A-space as follows:

(A1 , A2) = (A1)KL(A2)KL (II-11)

5



It follows Eq. (II-li) that A-space is a real inner product

space. Furthermore A-space is normed and metric by the

Euclidian norm and distance functions:

I A1 E (A1 , A1) 1 / 2

d(A1 , A2) = H A1 -A 2 I (11-12)

for A1 , A2 e A-space. One may also show that A-space is

closed under the usual matrix product:

A1 , A2 eA-space ; AIA2 , A2AI e A-space (11-13)

In other words A-space is a normed linear algebra.

Let A1 , A2 c A-space such that

0 < det A1 <

SA2 If =1 a unit vector (11-14)

Consider a path in A-space defined as follows:

A(s) = A + sA2 for s c R (11-15)

It follows Eq. (11-14) that A1  has an inverse in A-space

and Eq. (11-15) that

A1 1 A(s) = I + s A1 A2  (11-16)

and

det A 1 A(s) - 1 + s tr A1lA2 + s2 11 + s 3 Det(A1
1 A2) (11-17)

where II is the second principal invariant of A1IA212 A-space.

The three invariants of All A are bounded and

0 < det A1 < therefore it follows continuity of Eq. (11-17)

that there is a neighborhood of s - 0 , N(O) such that

6



s c N(O) 0 < det A(s) < (II-18)

Eq. (11-18) was developed for an arbitrary unit vector

A2 c A-space; therefore it is true for all unit vectors in

A-space. It follows

A1 e A-space, 0 < det A1 <

there is a neighborhood of A1 in A-space, 11(A I) such that

A c N(A) n 0 < det A < (11-19)

Let A +-space denote the set of all A e A-space such that

0 < det A < . It follows Eq. (11-19) that

A+-space is open C A-space (11-20)

Let Q, e A be proper orthogonal:

QiT Ql = I

det Q, = + 1 (11-21)

and denote the set of all proper orthogonal tensors by

Q+-space. A proper orthogonal tensor may be interpreted as

a rigid rotation of reference frames. It can be demonstrated

that given any pair Ql, Q2 E Q +-space , there is a continuous

path in A-space, Q(s) on 0 < s < 1 , such that

Q(o) = Q1, Q(l) = Q2 , and

Q(s) c Q +-space for 0 < s < (1-22)

Now consider any pair A1 , A2 - A+-space. It follows that
AI has an inverse in A-space and A2A le At-space. Also for

any Q £ Q+-space, Q A2A 1 e At-space. It follows the polar

decomposition theorem that there is a Q1 C Q+-space such that

7
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Q1A2A1 e A+-space is symmetric and positive definite. Now
consider the path in A-space given by the following:

A(s) - (1-s)A I + s QA 2

on 0 < s < 1 (11-23)

It follows Eq. (11-23) that

-l  (l-s)I + s QlA2A 1l

on 0 < < 1 (11-24)

and since QIA2A-1 is symmetric, it follows Eq. (11-24) that

A(s)A 1 is symmetric on 0 < s < 1 Also it follows Eq.
(11-24) that

det A(s)A 1 = (1-s) 3 + (l-s)2 s tr(QlA2Aj )

+ (l-s)s2 II+ s3 det(QiA 2Al
I)

on 0 < s < 1 (11-25)

where II is the second principal invariant of QIA2A,1

Because QIA2A11  is symmetric positive definite the three

principal invariants are strictly positive and it follows

Eq. (11-25) that

0< det A(s)All < on 0 < s < 1 (11-26)

11By hypothesis 0 < det Al < ;therefore 0 < det Al1l <

and it follows Eq. (11-26) that

0 < detA (s) < - on 0 < s < 1 (11-27)

In other words the straight path in A-space, represented by

Eq. (II-23), is in At-space.

8



It follows Eq. (11-22) that a continuous path Q(s) c
+-space may be found such that

Q(s) on 0 < a < 1 e Q+-spae

~Q(O) I 1Q(1) " Q, (11-28)

Now consider the continuous path in A-space defined by Eqs.
(11-23), (11-28):

A(s) E Q(s) i(s) on 0 < s< 1

A(s) - (1-s) Q(s) Al + s Q(s)QIA2

A(o) - A1  A(l) - A2  (11-29)

Also it follows in Eq. (11-27) and Eq. (11-29) that

0 < det A(s) < - an 0 < s < 1 (11-30)

It follows that Eq. (II-29) represents a continuous path between
A1, A2  which is in At-space. But A,, A2 were chosen

arbitrarily in A+-space; therefore between any two vectors

in A+-space a continuous path may be found which lies in
A+ -space.

In other words A+-space is a connected subset of

A-space. It's convenient to sumarize some of the

properties:

A-space is the space of second-order

tensors on E
3

A-space is an inner product space with

matrix multiplication (11-31)

9



A+-space {A1A e A-space, 0 < det A < -}

A+-space is a domain (i.e. open connected subset) (11-32)

of A-space

A+-space is a metric space and is closed under matrix

multiplication.

It will be useful to characterize further the properties

of paths on At-space. Let A1, A2 e At-space be symmetric

and positive definite tensors and consider the straight

path in A-space connecting them:

A(s) - (1-s)A 1+s A2 on 0 < s < 1
where A1 , A2 c At-space are symmetric,

positive definite (11-33)

It follows Eq. (11-33) that A(s) e A-space and symmetric on
0 < s < 1 Choose s - sI on 0 < s < 1 ; since A(s1 ) is

symmetric it follows that there is an orthonormal basis in
E3 relative to which the matrix A(s1 ) is diagonal. Relative

to this basis, Eq. (11-33) has the following representation
for A(s1 ):

for A si) : (A (Sl))ll -( -Sl)(Al)ll + sl(A2) 11

(A(s1))22 - (1-sl)(AI)22+sI(A2)22

(A(s1))3 3 - (1-Sl)(Al)33+sl(A2)33

(A(sl))ij - 0 for i 0 j (11-34)

Since A1 , A2 are symmetric positive definite tensors, their

diagonal elements (relative to any orthonormal basis in E3 )

are strictly positive. It follows Eq. (11-34) easily that

10



0 < A(s)ii <1

0 < A(s1)22 < -

0 < A(sl)33 < - (11-35)

or equivalently A(s1 ) is positive definite. Since sl was

chosen arbitrarily, Eq. (11-35) applies on 0 < s < 1 Hence

the following has been proven:

Al, A2 E At-space

such that Al, A2  A(s) is symmetric, positive definite

are symmetric, on 0 < s < 1 where

positive definite A(s) = (l-s)A 1 + s A2

on 0 < s < 1 (11-36)

Let A(s) represent a continuous path on A-space - i.e.

A(s) represents a function R--> A-space. The path derivative

is represented by A(s):

SA(s) -s A(s) (11-37)

Let A(s) be straight; it follows that A(s) e A-space:

A(s) - (1-s)A1 + s A2 , A1, A2  A-space

A(s) - A2 -A1 , A2 -A1 e A-space (11-38)

Also note the meaning of tangent. A straight path
(1-s)A1 + s A2  is tangent to a continuous path A(s) at A1

if and only if A(0) - A1  and A(0) - A2 -A1

Straight paths in A-space will have frequent use; it is

convenient to define a brief notation:

11
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Lf[A,, A2]1 (A (a) A (s) -A, + a A2, eR

A1, A2 e A-space} (11-39)

consider a vector A1 C A -space, and a straight path

L(A1, A2 where A2 e A-space.

A(s) - Al + s A2

A1 C A+-8p8ce A2 e A-space (11-40)

* It follows Eq. (11-18) that

A(s) s At-space on s e 11(Q) (11-41)

Furthermore it follows the polar decomposition theorem that

A(s) -Q(s) S(s) on s e N(O)

where Q(s) is proper orthogonal
S(s) is symmetric, positive

definite (11-42)

It follows Eqs. (11-40), (11-42) that

A(O) - A, - Q(0) S(0)

A(0) - A2 - (O) S(O) + Q(0) §(O) (11-43)

Eq. (11-43)2 has the following representation:

A(0) - A2 - 4(o) QT(0) Al +Al S1 (0) S(O)

or 4(O), i(0) 1) A2  (11-44)

12



It follows Eqs. (11-39), (11-44) that a straight path

through A1  is uniquely defined by Q(o), 9(o) Now it

will be proven that the function represented by Eq. (11-44)

is one-to-one.

Since Q(s) is orthogonal, it follows that

QT(s) Q(s) = I on s c JI(0) (11-45)

Differentiating Eq. (11-45) and setting s = 0 gives the

following for any smooth Q(s):

QT(o)Q( 0 ) + QT( 0 )Q( 0 ) - 0

QT(0)Q(0) + QT (O)Q(0) - - 2 (QT( 0 )Q( 0 )T(QT(Q)Q( 0 )) (11-46)

Also it follows Eq. (11-40) that A(0) - 0; therefore it

follows Eq. (11-42) that

Q(0) S(0) + 2 Q(O)S(0)+Q(0)s(0) - 0 (11-47)

It follows Ea. (II-46) that
C QT( 0 )Q( 0 )

C = - CT (11-48)

Eq. (11-43) 2has the following representation:

AT(0)A2S-l(0) - C + S(0)S'I(0) (11-49)

where C is skew-symmetric, S(0) is symmetric and positive

definite, and S(O) is symmetric.

Take the transpose of E q. (II-49) and add to Eq. (11-49):

QT(O)A2S'l(0) + (QT(O)A2S'I(O))T- S(O)S'I(0) + S 1 ()S(O)

(11-50)

Eq. (11-50) has a unique solution for S(0). To prove it,

it is convenient to use matrix representation. Because

13



S- (0)is symmetric positive definite, it follows that there

is an orthonormal basis in E 3  such that S- 1(0) is

diagonal:

[a 001
S ()= 0 a2 o0

10 0 a 3J

where a,, a2, a 3 >0 (11-51)

It follows that

S1 1(2a,) -S12 (a 2+al) S13 (a3 'a1)
9(0)s (0)+-l (0)i 22(a2=3( +2

L 33(2a ) J(11-52)

The coefficients of the elements of Sin Eq. (11-52) are

strictly positive; therefore Eqs. (11-50) may be solved

uniquely for S(0) , i.e. it follows Eqs. (11-50), (11-52)

that

A 1 S(0) (11-53)

It follows Eq. (11-43), (11-53) that

A1
A2 - 4 Q (0), (0) (11-54)

Finally, it follows Eqs. (11-44), (11-54) that

S() ) A 2 (11-55)

as was to be proved.

14



Consider a scalar valued function defined on A-space:

f(A) , A c A-space , f e R (11-56)

The gradient of f is a second-order tensor and the second

gradient is a fourth-order tensor, which are represented as

follows:

fA(A) - f(A)

where fA c A-space

fAA(A) -- F-

where fAA is a linear

operator on A-space (11-57)

The first and second directional derivatives of f(A)

evaluated at A - A1  for the direction A2 have the

following representations:

DA2 f(Al) = tr f(A)A2)

DA2 f(Al) = (A2)KL fAKLAMN(A)(A)MN (11-58)

Let f(A) be smooth on A-space and A(s) be a smooth

path on A-space. It follows Taylor's expansion that

f(s)-f(O) =s(Di(0)f(A(0))
S2 D) 2 (C)

+ ( (0) f (A(0)+D() f(A(O)

+ for s E N(O) (11-59)

15



It follows Eq. (11-59) that the path derivative f(0)
equals the first directional derivative. Also if A(s) is

a straight path the second path derivative f(O) equals the

second directional derivative. More generally, it follows

Eqs. (11-11), (II-58), (11-59) that f(0) equals the second
directional derivative if, and only if, A(O) is perpendicular

to fA(A(O))

Now consider all symmetric second-order tensors (B):

B-space = (AA e A-space, A = AT) (11-60)

It follows easily the structure of A-space that

B-space is a real inner product space

B-space is connected C A-space (11-61)

+.
Further define B +space:

B+'space = (BIB E B-space, B is positive

definite) (11-62)

It follows Eqs. (11-36), (11-62) that

Be-space is connected C B-space (11-63)

Let B1 e B+-space and B2 represent a unit vector in

B-space. Consider the straight path in B-space defined as
follows:

B(0) = B1 + s B2, 0 < s < (11-64)

Choose a number sl (0 < sl < -). Since B(sl) is symmetric,

an orthonormal basis in E3 may be selected so that the matrix
is diagonal. Relative to that basis, Eq. (11-64) gives the

following:

16



B11(sl) =(B 1~l' IB)11

B22 (sl) =(B 1)22 + lB22

B33 (sl) =(B 1 )33 + s1(B2)33  (11-65)

Let b represent the minimum eigenvalue of B 1 .Since B 1
is positive definite and B 2  is a unit vector, it follows

that

o < b < ,and

b < (B1)11

b < (B1)22 <

b- B13 relative to

- s< s (B) 1  any orthonormal
2)11 basis in E3

-s s( 2)22 <s

(B2< 33 (s (11-66)

It follows Eqs. (11-66) that a number M > 0 can be found

such that

o < (B1)11 + s (B 2)11 <relative to

o < (B 1)22 + s (B 2 )22 < 00 any orthornormal

o < (B 1)33 + s (B 2)33 < - basis in E 3

for 0 <s < M (11-67)

It follows Eqs. (11-67) and (11-65) that

B(s) is positive definite on 0 < s < M (11-68)
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Since the unit vector B2 was chosen arbitrarily in B-space,

it follows that Eq. (11-68) holds for any unit vector in

B-space. It follows that

Bl e B +-space o=o there is a neighborhood of B1 in

B-space, N(B1 ) , such that

N(B I ) C B+-space (11-69)

In other words

B+-space is open C B-space (11-70)

It is convenient to summarize the properties of the two spaces

as follows:

B-space is the space of symmetric

second order tensors on E3

B-space is a real inner product

space

B-space is connected C A-space (11-71)

B+-space = (BIB B-space, B is positive

definite)

B +-space is a domain of B-space

+
B+-space is a metric space

B+-space is connected C A-space (I-72)

Now consider the triplet (A, a, B). Define the

associated space as follows:

(A, a, B)-space E ((A,a B)JA c A-space, a c R,

B e B-space} (11-73)

Retain all of the operations defined on the three subspaces;

e.g. the inner product is
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(A,, a,, BI),(A2 , a2 , B2 ) (AI , A2 )+ala2 + (BI, B2 ) (11-74)

and the norm and metric follow easily. It follows that

(A, a, B)-space is a real inner product space (11-75)

Now define (A, a, B) +-space:

(A, a, B)+-space H (A, a, B)IA e A+-space, 0 < a <

B e B+-space) (11-76)

It follows easily the properties of the three subspaces

that

(A, a, B) +-space is a domain of (A, a, B)-space,

and (A, a, B) +-space is a metric space (11-77)

Also consider the space defined as follows:

(A, a, A)-space - ((All a, A2)IAI, A2 e A-space

a E (11-78)

It is clear that

(A, a, A)-space is a real inner product space (11-79)

Also

(A, a, A)+-space - ((A1, a, A2) IA1 , A2 e A+-space,

0 < a < Co) (11-80)

Then

(A, a, A)+-space is a domain of (A, a, A)-space

(A, a, A)+-space is a metric space. (11-81)

Finally note the following:
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(A, a, B) -space is a connected subset of

(A, a, A) +-space , (11-82)

and the mapping from (A, a, A) +-space onto (A, a, B) +-space

defined as follows,

(A,, a,, A2) - (Al, a,, Q2 A2)

where Q2 A2 is symmetric,

positive definite (11-83)

is open - i.e. any neighborhood of (A, a, A) +space maps onto

a neighborhood of (A, a, B) -space.
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III. PRECEPTS OF EQUILIBRIUM THEORY

Experimental experience indicates that many solids

exhibit persistence for restricted ranges of loading. Such

phenomena may be described theoretically by criteria of

mathematical stability - stability corresponding to persistence
and less of stability corresponding to uncontrolled spontaneous

processes. The following theory of equilibrium of solids puts
these ideas into precise mathematical statements. Stability

is posed in terms of energy considerations; the interaction of

both thermal and mechanical sources is included. The following

principles of continuum mechanics are the foundations of this
theory:

1. Balance of linear momentum, moment of momentum, and

energy.

2. The principle of reference frame indifference.

3. The principle of local action.

There is a definition of simple material in the foundations

of mechanics for purely mechanical theories. That definition is

generalized here to include thermal energy.

Let q represent the external supply of heat (q is a mass

density). Then a thermomechanical loading is represented by

the pair (F(t),q(t)), where F(t) and q(t) are functions

of time (t)

Definition of Simple Thermomechanical Material

A simple thermomechanical material is a material whose

stress is uniquely determined by the history of its thermo-

mechanical loading:

(F(s),q(s)) for- < s < t --->TR(t) (III-1)

The idea of "persistent" will be given the following

meaning.
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Definition of Persistent

Let F(tl), TR(tl) represent the values of the deforma-

tion gradient and the stress for t - tI  The pair,

(F(tl), TR(tl)) is persistent, means there is a thermomechanical

loading (F(t), q(t)) such that

(F(t),q(t)) = (F l(tl),0)

and for t > t

TR(t) = TR(tl) (111-2)

In this report the term persistent will be used to describe

experimental observations; the phrase "equilibrium state,"

which has a similar meaning, will be used in the theory.

A local state, or simply state, is characterized by the

values of the deformation gradient (F), the entropy density (n),

and the substate (a) . Inherent in these measures is a reference

configuration from which F is measured and relative to which

densities are measured; all densities are measured per unit mass

in the reference configuration. The substate variable (a) is

a parameter which represents the microstructure. Three

additional state variables are assumed primitive concepts: The

internal energy density (e), the stress (TR), and the

temperature (e); e, TR, e are ascribed their usual properties.

Relative to a reference configuration a state is represented

by the triplet (F,n,a) Furthermore, it is assumed that if

the triplet (F,n,) represents a stable state, then it

uniquely defines values of all state variables, i.e.

(F,rn, a) ----- >e,TR,8 (111-3)

So far the substate has been represented vaguely by a .

Such a representation is too vague to be of predictive value.
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Microstructural changes are represented in the theory of

plasticity by plastic strain. A similar measure is used in the

present theory - substate stretch tensor.

Definition of the Substate Stretch Tensor (a)

The substate stretch tensor (8) is a symmetric, positive

definite second-order tensor which transforms as a second-order

tensor under a change of reference configuration:

a = H-1 T B H-1  (111-4)

where H represents the change of reference configuration.

The following postulate makes clear that the theory
that follows is restricted to substate processes which may

be represented by the substate stretch tensor.

Postulate I

There are substate processes which may be characterized

completely by the effects on the substate stretch, i.e. there

is a map

(F, n, a) - (F, r, 8) (111-5)

such that if

(F, nl, a, ) --- el, TR, e1

and
(Fl, nI , a2 ) -*e I , TRip 1

then
(F ,V n I ,  a,

)  -- - (Fl ,  nIl ,  BI)

(Fl, nl, a2 ) ------* (Fl, nI, 81) (111-6)

It follows that if the triplet (F, n, 8) represents a stable

state, then there is a function such that

(F, n, 8) ---- e, TR, 8 (111-7)
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Note that, for any proper orthogonal Q , the matrix
product Q8 represents an element in A+-space (defined in

Section II):

Q8 e At-space (111-8)

where Q is proper orthogonal.

Definition of (F,n,e)-space
f+

(F,n,8)-space (F,n,QS) F e A+-space,

0 <n <

8 c B+-space,

Q is proper orthogonal) (111-9)
It follows that (F,n,8)-space is exactly the (A,a,A)+-space

described in Section II. The symbol 8 will always represent

the substate stretch tensor; hence it is always symmetric,

positive definite. Note in Eq. (111-9) that (F,n,s)-space

is isometric to E19  In most of what follows the values

of the triplet (F,n,Q8) will be restricted to the values of

the triplet (F,n,8), which defines a connected subset of

F,n,8)-space. In other words, even though 8 is symmetric,

its dimension is taken as nine. Also, when convenient, an
orthogonal tensor may be introduced into the notation, i.e.

a point in (F,n,8)-space may be represented by (F,n,QS).

Next follows a definition of stable equilibrium, upon

which the analyses which follow rests.

Definition of Stable Equilibrium (S.E.)

There is an open region of (F,n,8)-space (D) for which

a triplet (F,n,8) e D if and only if:
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(a.) There are functions defined on D such that

e - e.(F,T, )

TR T-R(F 1n, 9)

o =f ^(F,t, ) (T11-,0)

and
e(F,n,a) C C2 

TI> 0, e > 0 (I-l

(b.) Fl l , ) , (F l , T2 , 81) e D 4, L[F, T ,- I8 ,

(FI 2' -81)]C D (111-12)

(c.) (Fl,n I , ) e D -o there is a (F 2 ,r 11 B1 ) e D such

that TR(F2 1, 6le) - 0 (111-13)

(d.) The isotropy group of e(F,n,B) is a proper subset

of the unimodular group. (111-14)

(e.) Reference frame indifference requires, for any

proper orthogonal QI'Q2, the following:

(FlPT11, 1 ) e D % (QlF 1 ,nIQ 28 1 ) c D
e(F l , nl, 0 ) - e^(QFl, %I Q2 61)

Cf.) Consider a spherical neighborhood of 0 in E3

(NR(O)). Then (F1n1 61 ) e D only if there is a

neighborhood of the function FIX(N(Fl)), a neighbor-

hood of nl(N(nql)), and a neighborhood of 61 (N(81)),
such that for all homeomorphisms (on NR(0))
f(X) e N(F), all n(X) e N(nl), and all B(X) c N(B1)
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e(F(X),n(X),B(X)) dV > e(F 1 ,n, 9 81 )V (111-16)
R(0)

where (i) f(X) = FIX on aNR(O), and

F(X) - vf(X) on NR(0)

en(Fl, nl, a,) (n(M)-n 1 ) + tr e (.Fn. l

NR(0)
(O()-01 ) dV - 0

To proceed with analysis, a means of comparing values of

state variables on D is required. To distinguish between
paths and processes (which will be defined subsequently) the

following definition is made.

Definition of an Equilibrium Path

An equilibrium path is any continuous function defined on

an interval Ca,b] of Rl-space with values in D - i.e.,

F = F(s)
n= n(S)

Q= Q()B(s.) a < s < b (111-17)

- and the state variables all assume their equilibrium values

at each point on the path, e.g., e = e(F(s),n(s),Q(s)B(s)).
Such paths are not restricted to realistic processes - e.g.,

an equilibrium path may be discussed even if it violates basic
principles of irreversible thermodynamics.

A path derivative is represented by a "dot" - e.g.,

F(s) - (a/3s)F(S) - and, since the analysis in this report

is restricted to the "material description," a path derivative

is equivalent to the "material derivative" - i.e., following

a particle of material.
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Theorem 1

PR RF
R(F,n,s) - (F,n,B)

on D (111-18)
F AT(F,n,8) is symmetric

F eF(F,n, B) is symmetric

Proof

Consider an equilibrium path through a state (Fl,n1 , 81)

with velocities (F, n, 8). It follows Eq. (III-10)1 that

FT
e - tr e F (Fl,nl,l)n

+tr e,(FIlnII)8  (111-19)

It follows the foundations of mechanics that e may be

represented in terms of external energy flux:

tr (_L T RT F) +q(111-20)

where tr (1RR TRT F) is the mechanical working and q represents

the heating (addition).

Since D is a region, Eq. (111-19) holds for independent

F,n, and . Also Eq. (111-20) holds for independent F and q

It follows Eqs. (111-19), (111-20) that

o- T T T
0- tr( T. T R e FT (F I ,nI s )

+ q - e(Fl1nl, 8)n+ e T(FInl, 1 )1 ) (111-21)
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Choose F 0, q -0, rt=0, 8 =0, it follows Eq. (111-21)

that

0 = tr ( T- TRT eF (Flrtl, 11)F (111-22)

must hold for all F in the space of second-order tensors.

But -.L TR FF~~,l is a second-order tensor. The only

second-order tensor which is orthogonal to all Fis the

zero tensor, i.e. -e(lfl8)(1-3

PR

It follows Eq. (111-21), (111-23) that

^T
q.- e n(F 1 1 1 'sin + tr e8(Fl,n1 ,,)B (111-24)

Now consider 8 - 0; it follows Eq. (111-24) that

8 -0==> q= e (F1 ~ 1 8 (111-25)

It follows classical mechanics that for B fixed, the

temperature (e) may be defined from the following equation:

q- e r~(111-26)

It follows Eqs. (111-25), (111-26) that

e n e(F 1 ,1 1 B) (111-27)

Let Q(s) represent a continuous path in F-space such

that Q(s) is proper orthogonal and Q(O) - I .It follows

Eq. (111-15) that

e (Q(s)F1,.n1,81P) (F 1 -11, al) (111-28)
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Take the path derivative and evaluate for s = 0

tr F1 eT(F 1 , n1I ,81 )Q(0) = 0 (111-29)

ATT
Eq. (111-29) indicates that the tensor eF(Fl,n:,B)Fl is

orthogonal to Q(O) It's easy to show that Q(O.) is a

skew-symmetric tensor. Furthermore any skew-symmetric tensor

corresponds to a path Q(s). It follows Eq. (111-29) that

eF(Fl,nll)F 1 is orthogonal to any and all skew-symmetric

tensors; hence

eF(Fl,nl,3)Fl is symmetric (111-30)

Consider the same path Q(s) and it follows Eq. (111-15)

that

e(Fl,nl,Q(s)B1 ) = e(Fl,nl,8 1) (111-31)

Again take the path derivative and evaluate at s = 0

tr 1 e a( FlI, 1) MO) = 0 (111-32)

Since Q(0) covers the space of skew-symmetric tensors, it

follows Eq. (111-32) that

$ (F l 1 ,  8 is symmetric (111-33)

Equation (1Il-18)1 follows Eqs. (111-23), (111-10) 2

Eq. (III-18)2 follows Eqs. (111-27), (111-10)3;

Eqs. (111-18) 3,4 follow Eqs. (111-30), (111-33).
Q.E.D.
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Definition of Substate Tension (T)

The substate tension tensor (T) is defined on D by

the following:

T A(F,n,Qe) - BQ(FY,n, QB) (111-34)

When QS is restricted to B the following notation

will be used.

T(Fn, 8)= e (F,T, B) (111-35)B

Definition of Adiabatic and Isothermal Paths

Let (Fl,nl,8 1 ) e D and let (F(s),n(s),8(s))represent

a continuous path in D such that (F(O),n(O),6(O)) = (F l ,r I ,

B1). The path is adiabatic if and only if

6(F(s) ,n(.s), s(s))h(s)+tr T (F(s),,n(s),s(s))8(s) =0

(111-36)

The path is isothermal if and only if

tr 6TF(s),n(s),8(s))(s) + en(F(s),n(s),B(s))n(s)

+ tr( t (F(s),n(s),B(s))B(s) + 0 (1(S -37)

It is convenient to introduce a simple notation. A path

(F(s),n(s),B(s)) that is adiabatic will be represented as

(F(s),nA(s),8(s)) and one that is isothermal will be

represented as (F(s),nl(S),B(s)).

Theorem 2

Consider a smooth path (F(s),n(s),B(s)) through the

state (FI,nI,$I), i.e. (F(0),n(O),8(O)) = (FI,nI,$I).
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Then for any smooth F(s),O(s) there is a unique nA(s) such

that

fA(S) = - Fs 1 ( trT (F(s), rA(s),B(s))'(s)
9(F's) ) B(s))

(111-38)

Proof

Choose two smooth functions F(s) and B(s). Since a

is invertible Eq., (III-38) follows Eq. (111-36).

satisfies Eq.(III-38). Let

w (s) t i(F(s) , Is, (s) wi(s)

Tl(S) _(F(s),nl(s),B(s))

eA~s e(F(s),nA(S),a(s))

TA(S ) - (F(s),ITA(S),I8a(s)) (111-39)

It follows Eq. (111-38) for both nl(s) and nA(S) that

0 = el(s)nl(S) + Tl(s)a(s) = eA(s)nA(s) + TA(s)(s) (111-40)

By definition both paths pass through nI

n (0 ) = TiA(O) = n. (111-41)

It follows Eqs. (111-41), (111-39) that

e= = e8) A(O)

T = Ti ( 0 ) = TA(O) (111-42)
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Evaluate Eq. (111-40) at s =0 and it follows Eq. (111-42)l

that

nil(j) =) 0 (111-43)

Differentiate Eqs. (111-39) and evaluate at s =0and

it follows Eqs. (111-41), (111-42), (111-43) that

Y )= ;()(111-44)

This process of differentiation may be continued to prove

that the n th derivatives are equal:

n ()=n
"A (111-45)

if e(F,nI, B) is smooth in (FT~) it follows Eq. (111-38)

that nA )and nl(s) are analytic on s .Therefore it

follows Eq. (111-45) that

ni (s) = ns)(111-46)

which proves the uniqueness.

0. E.D1.

Theorem 3

(F ~llBi)e D only if:

(a.) there is a neighborhood of sl1N(al), such that for

all 62e N($1), 62 a

eFn2B -eF,,B)> 0 (111-47)

where

(i ( 1 n, 1) (r'2 -t1l)+tr ^ Fl, rt1 , 1)(62-61) =0
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(b) there is a neighborhood of rTi, N(q1), such that

for all q2 N(nl), n2 0 l

(111-48)

(c.) there is a neighborhood of 01,( N ) such that

for all c2 N0 1),02 1

B2~~ 02 B

(111-49)

Proof

Consider Ineq. (111-16). Let F(X) =F 1  and choose 02
in a neighborhood of al Let a(X) = 02 .Compute T)2  onl

the straight path which is tangent to an adiabat at (F1,n1l,aol):

A1-r1 tr T(Fl, T1 1a) ($2 -B) (111-50)

It follows that the path functions

f(X) = F1ix

n(X) = n2 on NR(0) (1-1

$(X) = a2

satisfy the restrictions for Ineq. (111-16); therefore it

follows Ineq. (111-16) that

dV> (F 13e 1,l 1) V (111-52)
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Since e(Fl,%2 82 ) is constant on NR(O) and f dV - V

NR(O)

is strictly positive, Ineq. (111-47) follows Ineq. (111-52)

and restriction (i) of (111-47) follows restriction (ii)

of (111-16).

Now let

f(X) = F1X

B(X) = BI  (111-53)

and it follows Ineq. (111-16) that there is a neighborhood

of ni,N(n1), such that for all r(X) e N(nl)

f (F,,n(X),B1)-e^(FI,nl,al ) dV > 0 (111-54)

NR(O)

where (i) f ( dV - 0

NR(O)

By adding the restriction to the inequality, it becomes

f , dV > 0

NR(0) (111-55)

where

(i) f O(F1 ,nal 1 )(n(X)-nl) dV 0

NR(0)

It follows easily that

Ineq. (111-48) = Ineq. (111-55) (111-56)

independent of restriction (i) of (111-55).
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Now suppose not Ineq. (111-48), i.e. suppose in any

neighborhood of ri1,N(nl), there is an n2 # n1 such that

e(F,,oL2,1)-^e(FIIBl)-^O(FIrl,,1)(rt2-n I ) < 0 (111-57)

It follows Taylor's formula with remainder and Ineq. (111-57)

that

e T (FlIn,1) < 0 for neL[nl,n 2 ] (111-58)

It follows Taylor's formula with remainder and Ineq. (111-58)

that in any neighborhood of rnl, an r3 e L[ril,n 2] and a

neighborhood of n3 ,N(n3) can be found such that for all
n - E: N (n 3 )

e(Fl'n,B1)-e(Fl1n3,81)-e(F n3,61)(nI-n3) < 0 (111-59)

Now it can be shown that (Fl,n 3 ,B1 ) I D . Let a(X) be a

continuous, scalar-valued, bounded function on NR(O) such

that

J a(X) dV = 0 (111-60)

NR(0)

and a(X) is not constant on NR(3)

Now choose

n(X) = n3 + c a(X)

where e E R, c > 0 (111-61)

It follows that a nonzero constant c may be chosen small

enough so that n(X) is in any neighborhood of on

NR(O) Now consider Ineq. (111-16). Choose
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x(X) = FI(X)

n(X) =n 3 + c a(X) on NR(O) (111-62)

5(x) 6

which satisfies the restrictions for Ineq. (111-16). It

follows Ineq. (111-59) that there is an c > 0 such that

-(FI n(X), 81 )- e (Fln 3 , ) dV<

NR(O)

Ineq. (111-63) is contrary to Ineq. (III-16); therefore

(F l n3181) t D (111-64)

Then it follows Ineq. (111-57) that not Ineq. (111-48) - in

any neighborhood of

(Flql, 1), there is a triplet

(F 1 ,n 3 ,8 1) D (111-65)

But D is open in (F,n,8)-space by definition; therefore

it follows Eq. (111-65) that

not Ineq.(III-48) -v (F1 ,n1 ,81) 4 D (111-66)

Ineq. (111-47) follows Ineq. (111-52) and Ineq.(III-48)

follows Eq. (111-66).
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Now consider Ineq. (111-49). It follows Ineq. (111-16)

that

f (F 1,f1 38XM)4'(F 1 1 1 81)-t7T T(F19rL1 81) (8(X)-81) dV > 0

NR (0)

for all 8(X) such that (111-67)

(i) tr T (Fl,nIa,)(B(X)- I ) dV = 0

NR(0)

It follows easily that

Ineq. (111-49) Ineq. (111-67) (111-68)

independent of restriction (i).

Now suppose not Ineq. (111-49): in any neighborhood of 81I

N(aI), there is a 82 such that

AA ATe(FI 1 nI,8 2 )-e(F ,n 1 ,81 )-trT(FI 1,8 1 )(8 2 -8I) <0 (111-69)

It follows Taylor's formula with remainder that Ineq. (111-69)

is equivalent to the following:

D0,0,2_ e (F1  8) 0 for all c £ L EBI,821 (111-70)

It follows Ineq. (111-70) that in any neighborhood of B1 there

is a 83 c L D1,02] , a3 8I or a2 such that

D2

0,0.8.8 3 e (F I nI ) < 0 for all c cL ro,2 (111-71)
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Now to prove that (F1,41,83) V D. Choose any continuous,

scalar-valued, bounded function on NR(o), a(X), such that

J a(X) dV = 0 (111-72)

NR(0)

and a(X) is not constant on NR(0) . Let

f(X) = FlX

n(X) = on NR(O) (111-73)
(X) = + I

OWX - 6 3 + c a(X)(B 1-63)

where e c R, c > 0

An c > 0 may be chosen so that B(X) c L[ 1,B2]. It follows

Ineq. (111-71) that

D2 
8 (X) 3e(Fl,n 1 ,8 5 (x)) < 0 (111-74)

for all B5 (X) c L[81,82]

It follows Taylor's formula with remainder that Ineq. (III-74)

is equivalent to the following:

(ln1l,8(x))_^(Fl,Tl,sB3)-tr^T(Fl~nl , 83) (8(X)-83) <. 0

(111-75)

and it follows Eqs. (111-72), (III-73)3 that

f tT (F 1 ,n I ,8 3 )(B(X)-8 3 ) dV - 0 (1II-76)

NR(O)
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It follows Eqs. (111-75), (111-76) and Ineq. (111-16) that

(Fl,11n1 ,83) J D (111-77)

In other words

not Ineq. (111-49)
f1 there is an (Fl ,nI ,63 ) in any

for (F 1 , n, 81 ) neighborhood of (FI ,rL1,BI ) such

that (F 1 ,nI,8 3 ) D (111-78)

But D is open by definition; therefore it follows Eq. (111-78)

that

not Ineq. (111-49) " (FI1 ri1 81 ) D (111-79)

for (F l n I ,8 I )

Ineq. (111-49) follows Eq. (111-79). Q.E.D.

It follows continuity of e(F,n,$) and Taylor's formula

with remainder that Theorem 3 has the following equivalent

representation:

Corollary

(F'1 ,11 , 81) e D only if:

(a.) there is a neighborhood of 81 ,N(81 ), such that

for all 82 c N(81), 82 7 81

D2 2n 2 e(Fln,8) > 0 (111-80)

D0 r12 -"1 82 8 1

where (1)8(l~I , 81)(n-n)+tr T^(Flo T1, 81) (B2" 01) "0

(ii) (n 8) is any pair on L[(n.lSl),(n 2 , 82)1

but (no,8) (n 1 , 81)
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(b.) there is a neighborhood of rI,N(nl), such that

for all 2 c N(nl) , 2 0 1

A

en (Fl'n2'l) > 0 (111-81)

(c.) there is a neighborhood of 01 ,N(OI), such that

for all 82 c N(81 ) , 82 B1

DOs 2 - e(Fn '8) > 0 (111-82)

for all 8 c L[81 ,8 2 ), 8 81

Theorem 4

The temperature function, Eq. (111-18)2, is invertible

in n and the inverse is continuous. A state (F,n,a) is

uniquely characterized by the triplet (F,6,n), where e is

the value of the temperature which corresponds to the state

(F,n,8) Let n(FO,8) represent the inverse function:

n(F,e,8) is the inverse of e(F,n,8) on D,

n(F,e,8) is continuous on D, therefore the

map (111-83)

(F,F,,8) is a

homeomorphism on D

Proof

Because D is open it follows that in a neighborhood

there are states (Fl,nl,81 )(Fl, n 2,8 I ) c D such that nl#1 2

Choose two such states, apply Ineq. (111-48) to each state,

and add the result.

,2 6 > 0 (111-84)

for r 2 # nI
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It follows Ineq. (111-84) that O(Fl,,8 1 ) is strictly

increasing in n and one-to-one. Now let L(n) denote

the domain of

L(n)- (n (Fl,n,8I ) C D) (111-85)

It follows Eq. (111-12) that L(n) is connected in R

Ineq. (111-84) applies to any two neighboring states on

L(n); therefore it follows that

e(Fl,n,a1) is strictly increasing in n (111-86)

on L(n)

It follows Eq. (III-ii)I that e(Fl,n,al) is continuous in T;

therefore it follows Eq. (111-86) that

n(F1 ,e ,n l) is strictly increasing and

continuous on L(O) where
L(e) E-( e=--(Fl,n,Bl), w'c L(r,)) (111-87)

In other words

F fe > is a homeomorphism on D (111-88)

Since the inverse was defined for an arbitrary pair (FI ,81),

the definition may be extended onto the image of D

TV- (F,e,$) on the image of D (111-89)

Let (F l n 1 , 8 1 ) c D and (Fl,n 1 ,8 1 ) . e1 . Choose a

neighborhood of n, , f(n2) :

f(nl). (n4nl < n < nU) (II-90)

where nL < qI < n U
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Define 0Lf 0U as follows

6L e(FnL,8)
on D (111-91)

U - (F~nu, ,)

It follows Eqs. (111-87), (111-90) that

e(Fl~nL,8l) <

e(Fii)U,8l) > 11 (111-92)

It follows continuity of e(F,n,8) that a neighborhood of

(FI, 81), N(FI, 81) can be found such that

6(F, nL,8) < el
(FA e N(F l n 0) =1 (111-93)6 (F ,k , ) > e 1

Let emin., e max represent the inf of aL and the sup

of 0U respectively:

emin. = inf e(FnLB) on N(F, 81)

=max. m sup e(F,nU ,B) on N(F1,81) (111-94)

It follows Eq. (111-94) that

0 min. <0 1 < 0 max. (111-95)

Define a neighborhood of 81 ,N(8I) , as follows:

N(e1 ) W (6emin < 0 < 6max) (111-96)

It follows the above construction that any triplet (F,6,8) such

that (F,O) c N(FI,n1 ) and e c N(el)

->(F,0,0) -nncN(nl) (111-97)
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In other words for any neighborhood of n, a neighborhood

of (Fl10e,8 1 ) can be found such that the image of

N(F1 613 1) C N(r%). It follows that

(F,e,B) -on is continuous (111-98)

It follows Eqs. (III1-l) 1 and (111-98) that

(F,n,8) -(FO,) is continuous on D

(F,,8) (F,n,) is continuous on the

image of D (111-99)

Equation (III-83)3 follows Eq. (111-99). Equation (III-99)1

follows Eq. (111-89) and Eq. (I1I-99)2 follows Eq. (111-98).

Q.E.D.

It follows Theorem 4 that isothermal paths exist and

are unique in some ways.

Corrolary

Consider a continuous path (F(s),n(s),B(s)) in D through

the state (F1 ,nI,81 ) with temperature e1 , i.e. (F(O),n(O),

8(0)) = (Fl,l,8 I,) and (Fl,nl,q1 ) -> 8. Then for any

continuous pair F(s),s(s) there is a unique continuous

function nI (s) such that

61 . e(F(s),nI(s),s(s)) on D (III-100)

Theorem 5

Let (Fl,nl,8) e D with temperature e1; then

en (F ll, 81) 0 -o (Fe,8) ->(F,n,8) is differentiable

at (F1 ,6I ,81) (III-101)
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Proof

Consider the inverse maps:

(F,6, a) - j

(F~n,~ -> e(111-102)

In other words the following equation is an identy in 0

e _ (F,ii(F,e,B),B) (111-103)

It follows Eq. (111-l1) 1that Eq. (111'-102) 2is differentiable.

Assume Eq. (111-102) 1is differentiable at (F1,0,,B); it
follows Eq. (111-103) that

+ 8 (Fl'n 1,$1)ne (F1,O1,~i) 8

for independent F, e, B . If 6^n (F 1l Bl) 0 0 it followsI Eq. (111-104) that

ne (F1 ,61 'al = ______

1 A
n Fel$ = A 6 a(F 1,n1 'S) (111-105)

If6 (Flinia) 0 it follows Eq. (1I~l1tattergt

hand side of Eq. (111-105) is continuous; Eq. (111-101) follows
Eq. (111-105). Q.E.D.
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Corollary

(Fln 1 , 1 ) = 0 . n(F,6,6) is not differentiable

for (F,6,S) = (Fl ,e1 ,aI ) (111-106)

Theorem 6

(Fl 1 , 1 j) c D only if there is a neighborhood of

(F 1 , 1 )d such that for every (FIr 2 , 82 ) c N(F,,81 ) ,
(F l n 2 , $2 ) # (F l n 1 , BI )

A
e(F I , n2 , 2)-F I  I  1-( I  I 8)(2n )

^T

-trT (F1 ,nl,6 1)(62-61) > 0 (111-107)

Proof

Consider the converse of Ineq. (111-107): In any
neighborhood of (Fl,p1l,1 ) there is a (Fl,n2,82) # (FI,1,1
such that

rT(F ) (0 - 8 1ad< 0 (111-108)
for all (FlTi) e L F

It follows Ineq. (111-108) that there is a (Fl,n3 ,63 ) in any

neighborhood of (FI ,r1 ,11), (Fl,n 3 , 3 ) # (FIr1,,1),
(Fl,ri3 , 3 ) # (Fl,n2 , 2)1, (F1 T 3 ,8 3 ) c L 1(F ill'I, )(FI T2,B21

such that
e(F 1 , n , S)-eF 1 r 3  )-(Fl,n3 ,  83 ) -6n

3

-trT(Fln 3,83)(8-8 3) < 0 (111-109)
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for all (F l ,n. ,  E: L (Fln I , $ ) ( F l 1Y2 , B2 )

(Fl, , ) (Fl 3 '3)

Let

f(X) F1X

n(X) n3 + E a(X)(n 1l- 3 ) on NR(0) (III-ii0)

(X) 13 +)

where

c eR, c > 0

a(X) is a scalar-valued continuous bounded

function on NR(o) such that

f a(X) dV 0 (III-ill)

N R(O)

It follows that for any a(X) an e > 0 can be found such

that

(FIq(X),B(X)) E L [(Fl,nl,B1)(Fl,l 2 ,$ 2 )] (111-112)

It follows Ineq. (111-109), Eq. (111-112) that

e(Fl , n(X), 8(X))-e^(F I , nI , 1)-8(F I , T13'83) (B(X-83)

-tr T(FI~n3,a3)(M x)-BI) < 0 (111-113)

It follows Eqs. (III-110), (III-111) that (f(X),n(X),B(X))

satisfy the constraints for Ineq. (111-16) and it follows

Ineqs. (111-113), (111-16) that

(Fl1'n3'$3) j D (111-114)

In other words
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not (111-107) (111-108) In any neighborhood of

for (Fl,nl,8I) for(Flnl8l) (F, nl,8I) there is an

(FIr 3, 3 ) 1 ' D (111-115)

But D is open by definition; therefore it follows that

not (111-117)
forFll711 1 ,)=:: 1( e D (111-116)

for ( l n , 1

Theorem 6 follows Eq. (111-116).

Q.E.D.

An equivalent for Theorem 6 follows easily Taylor's formula

with remainder.

Corollary

(F 1 , 1 ,8 1 ) e D only if there is a neighborhood of

(F 1 ,n1 ,8 1 ) such that for every (F 1n21 a2) c N(FInlB1),
(F l 'T2 162 

)  4 (F l OTn l , 8I )

D O -~P (Flln,B) > 0 (111-117)

for all (F 1,3 .,8) c L [(Fl 1 Ii1 ) (Fln 2 ,8 2 )]

(F l I T, B )  * (7Fl , 1, 8 1 )

Theorem 7

(Fl ,n1 ,e1 ) e D only if

(a.) enn(F 1 ,1 1 ) - 0 e nF(Fl,nl,81) = 0

and (F 0 (111-118)

(b.) tr 1( 82"81J) T e=6F'n'1 -- 0

t(. [(2-(81 ) T  8]Tn1 (Flnl,1 0 0 (111-119)
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Proof

It follows Eq. (111-18) that

(111-120)

for any path with tangent (F,rj,B) at lq,,)

Now assume e (F 0 and not both e F,,)
e n(F a,~). are zero. It follows Eq. (111-120) that there
is a pair (F 1 ,8 1) 0 such that (i.e. T1 = 0)

>F B 0 (111-121)

Furthermore it follows Eqs. (111-121), (111-120) that

Fls>8 # 0 for all n (111-122)

Eq. (111-122) contradicts Eq. (111-100). Eq. (111-118)

follows easily.

Now assume the contrary to Eq. (111-119): there is a

a2~ such that

tr ( 2 -B1 )T e,,,(F1 ,ri1,0l) = 0 ,and

tr 1( 62-e1  e 61#(lnpl 0 (111-123)

Consider the second-directional derivative for F 2 = F 1
It follows Eq. (111-123)l1 that

D 0,r2Tl 28 (F 1 T I a) = (n2l e i (F , 116

+ 2 tr 1( 8 -)T eOn(F13n11e1) (111-124)

for any (F 1 nr2182) in N(Fl,nl,81)
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Let
n3 = nI + :(.n2-n Z )

where e E R, c2 <I, 1 0 (111-125)

It follows Eqs. (111-124), (111-125) that

2 2 2
D0,'n3_nlB2_Bl (Flnll ) = c (n 2 -nl) e (Fl,nl,61)

+ 2 c tr [ 82-0.)T eOn (Fl~nlB1) (111-126)

The first term on the right-hand side of Eq. (111-126) is
non-negative and even in e , and the second term is odd and

liea i ~.If tr[(8 2 -8 1 )T ^ej~(Fl 1 nl,8 I) i# 0 it followslinear in c I r(

Eq. (111-126) that there is an e1 such that

D2  e (F l ,n l , 8 1 ) < 0 (111-127)0,nT3-nlI, B2- 81

for all c between 0 and c1

It follows Eqs. (111-126), (111-127) that for any 82 81,

such that, Eq. (III-123)1 holds, there is an %f t such that

2
D 0,n-nl,02_al (F1 T1,l8 1 ) < 0 (111-128)

for all n e L[r 11n4, n#l, # n4

Ineq. (111-128) violates Ineq. (111-117); therefore

(FI,nIa I ) £ D , tr [(B 2 _i8)T 1 8 (Fl l8l) - 0

2tr [( 2 -8 1 )Tea]n(F rll 18) 0 (111-129)

Q,E.D.

49



Theorem 8

Let (F1 ,7I1,01) e D ernn(Flnl,81) 0 0. Then for any

pair (F2 ,82) in a neighborhood of (F1 ,61), (F2 ,B2) 0 (F ,801)

there is a unique n2  in a neighborhood of n, such that the

second-directional derivative for the direction (F2 -F1 , n-n1 ,

62-01 ) is minimum for n =n2 . Also the straight path

L [(FI,.nI, 1 ),(F 2 ,n2, a2 )] is tangent to an isotherm at (Fl,nl,ai)

(2n) = - x " {t F'F F'll~l

2 2
DF2 -Fn 2 - n , 2 - 1 e(F 19 n1 , 81 ) = FF , 0  e (F, 1 )

-e(2-n1 nn (F n1,8 )

FFe,n-,2 1) 0 (Fl, w E1. () e la
fo s 0 Eq (1- F21F3,1) Ian2-q1 ( 30) tha+(n2-n2 )2  in(Flvnl', I )

Proof

Consider a straight path L[I(FI,rIBI )(F2,n2,B2)1

represented by (Fs),n(s),O(s)) for 0 < s < 1 The path

derivative is independent of s:

(FYn,8) -- (F2-F l ~ n 2 -n1 , B2 - 8 1 ) (111-131)

if e (Fl,nj,81) 0 0 , it follows Eq. (111-37) evaluated

for s-- 0 ,Eq. (111-131), and Eq. (113)that

L[(FI,nl, ,,, 2 is tangent to an isotherm at
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(FI nI , BI) Now expand the second-directional derivative
for the direction -FL-nl,

2 a(F2,rt1,-1)

2  ^ 2F2-F 1 , In- n1 ,I B2- $1e ( F -' 1) =-- F2-F 1 , 0 ,1 2 - 1B F ' I '

+ 2tr [(F 2 -Fe TFfl(FI n1,B1) +tr 2-B)Te,]

(F 1111,1))(111-132)

2-'+ (n-nl) en(Fl,nl, l)

With some algebra it is easy to show

- 2 (n 2-nl)(n-nl) + (T-Inl) -(n 2 -l) 2+(--n 2 ) 2  (111-133)

Equation (111-130) 1 is used to eliminate the second term on

the right-hand side of Eq. (111-132) and then Eq. (111-133)

is used to rearrange the terms

DF 2-F I n-nl,B2-6l e^ (F I n I B1 ) =D 2 _F,,2O le(FlTl ,

2-_(n2_nl)2 e^i (FIl , 1 )

2n^

+(n-n2 ) 2 e Tn(FlI, Tl ,1)

(111-134)

Equation (1I1-130)2 follows Eq. (111-134) for m--"2

Equation (III-130)3 follows Eqs. (III-130 )2and Eq. (111-134).

Also it follows Eq. (111-81) that

enn (Fl nI, Bl) 0 -0nn(F l ,) > 0 (111-135)
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It follows Eqs. (111-130) 3 , (111-135) that the second-directional

derivative for the direction (F2 -FI, n-n 1 ',8 2 -8 1 ) is minimum

for n = n2
Q.E.D.

Theorem 9

Let (F1 ,1,t 19,) c D and there exist a pair (-n2,2)

O (nl I ) such that

D2 2  
- 1 (FlOnl,11)= 0 (111-136)

The following Ineqs. are equivalent:

2-'
(n2-nl)e (Fl,n I,$,) # 0

D ,0,1 2 _$1 e(F1 ,nl,a 1 ) # 0

tr [( 2 -0 1 )Te an(Fl, i,$1)(n2-nl) 0 0 (111-137)

2 A

Also if (n2-n I) e nn (Fl I , 1) 0 0 the straight path

L [(FI,nI,BI),(FIn 2 ,82j is tangent to an isotherm at

(Fl,11, 1) , and

tr 1( 82-1 ) T ea]T(F 11 nl,5 1 )(Ti 2 -n 1 ) = (n 2-nl) ^ (F 1 n 1 81 )

2 . (Fl,nl,81) > 0
0,0,2-6 (111-138)

Proof

Let (n,82) y (nl,8 1), then expand the second-directional

derivative:
2 2D20,n-nl,82_81,e ( Fl rnl SI ) = (n-~l)2 enn (Fl1,nl,.8 I )

+ 2 tr [( 82 - 81)T e (Fl,nl,81) + D2,0(Fl nl1

(111-139)
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It follows Ineq. (111-117) that

c D :- D2 n-Ia2BIe(FI,n,,BI) > 0 (111-140)

Assume Eq. (111-136) and it follows Eq. (111-140) that

D 2 nl _ (F I l I ) > D 2  -;(FI l1 ) = 0
,n-n1 ,B2 - 1  _ ,2-nl, I2-1

(111-141)
for all n

Now assume Eq. (111-137)i It follows Eqs. (111-137)i

(111-81) that

n2-n I # 0

e n(Fl'nl, Y)> 0 (111-142)

It follows Theorem 8 that L[(Fln2 82 ),(Frtl,8 1 )] is tangent to

an isotherm at (FIr 1 ,81). It follows Eqs. (111-130), (111-141)

that

- tr [( B2-81 e6n(Fl ( = (n 2 -nl) 2 enn(Fl,nlo I )

2 = 2 (111-143)D0,0,8 2 - B ( ,1)=(2Tl eTi(F ,l,61

It follows Eqs. (111-142), (111-143)

(111-136),(111-137) 1 --> (111-137) 2 ,3 , (111-138) (111-144)

Now assume Eq. (111-137) 2. It follows Eqs.(III-118) and

(111-137)2 that

eBn (F1lT11l,81) 0 O,,,^n(F l Tl,81) 0

82-81 0

2-n1 0 0 (111-145)
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It follows Eq. (111-145)l1,3, (111-81) that

2
e iV 4 )(12-T)> 0 (111-146)

It follows Eqs. (111-145), (111-146), (111-144) that

Now assume Eq. (1.11-137). It follows

(111-136),(111-139) =-:, either (111-137)l

or (111-137)2 (111-148)

It follows Eqs. (111-148), (111-144), (111-147) that

(111-136) ,(111-137) 3 =*-(III-137)l1,2, (111-138)

(111-149)

Theorem 9 follows Eqs. (111-144), (111-147), (111-149).

O.ED.

Theorem 10

Let (F rn1,8 c D. Then e nn(F 1 ,r11, 1) #' 0 only if there

is a neighborhood of (F1,n11,81) such that for all (F2,ri3,a2) c N

(F 1,r1, 81)

e(2 19n3, 2)-a(F 1 1,01)tz 1  R (F n 1  2-F 1)

-e(F. li 0) n2nl -tr -r (F1 ,,nl, 1) (0 2 -01 ) (111-150)
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where

(i) tr I(2 )eFn (F1,11l,081)+e nn(Fl~ I SO (n2-nl)

+ tr [(2- )T ](Fl,l,) 0

(ii) n3 # n2

Proof

It follows Ineq. (111-81) that

enn(Fl, nl,1 P 0 e Snn(Flvnl,81) > 0 (111-151)

It follows Theorem 8 and Ineq. (111-151) that for any pair

(F2 , 2 ) # (Fl,81 ) there is a unique n2  such that

L[(F1 , 1 , 81) (F 2 ' 2 1 2)] is tangent to an isotherm at (F l l )

and

D2  1(Fn0Y > 2 (Flnl I )
F2-F l ~ n 3 - n 1 , a2 -a Fl81 D 2 F r2-lB2B n

(111-152)

where n2  satisfies restriction (i)

and n3 satisfies restriction (ii' of Ineq. (111-150).

Represent the two straight paths parametrically:

(F(s),n(s),O(s)) £ L[(FInlSI),(F2,n22]

such that

(F(O),n(0),8(O)) = (F 1 ,n 1 ,8 1 )

(F(1),n(1),8(1)) = (F2 ,n2,82)
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and

(F(s), (s),$(s)) e L[(Fln~y1) (F 2 'T3 '82)] (111-153)

such that

(F(O), (O),B(O)) = (F 1 ,T1 , 61)

= (F 2 ',3,a2

It follows Eq. (111-11) 1 that

2D F 2..F 1f3 ...fl3-61e( s)n(s)a(s)) and

D F- F~n2nl13-$ (~s,n(s),B(s)) are each continuous

on 0 < s f 1, and it follows Ineq. (111 -152) that in any

neighborhood of s=0 there is an s1  0 such that

D (F~si~)() > D2
F2 -F 1 n3 -18 ,8 2 -s3)1 3',3))FlT2T'12

e(F(s 2 ) ,n(s 2) B~2 (111-154)

for all s 2' 53 such that

0 <s 2 <S1

0 < s3 <5S1

Let 84 be any value such that 0 < s4 <s 3 . It follows
Taylor's formula with remainder that
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^ 1 trR T (F I nl'Bl)(F(s ) _ F l
((s4), (s4) 6(s4)-Fl Pl R) 1R '11 , ( d-l

R
A AT

-e (F Il l, 61) ("(s4)-nl) -tr T (1, n~l, aI) "(s4)d

1 D 2  _Fl,5 )fll); 0 e4F1 (F(s 5) (s )) (111-155)= F F(s4)F,(s)n,(s4) -a(s,(5) 1115

for some s5  such that 0 < s5 _ s4 , and

e(F(s 4) ,n(s4) ' (s4) -e(Fl'nl' a1)- - R Fnl$1)F(d-)

-t(Fll Eq 1 ) (n(s- n ) - tr T (Fl,n l, 1)((s 4 ) -a

I D2 e(Fs6) ~s6 8 (6)) (111-157)

I D F (s4)-Fl, n(s4)-nl,a( s4 )_$ 1 (sdndaO(1156

for some s 6  such that 0 < s6 < s4

It follows Eqs. (111-153) and Ineq. (111-154) that

DF(s4)-Fl, h s4)-l , (sl4 )-y rep(F (s3 ) ,(s 3 ),(s 3 ) >

dF (s 4 ) - F , n (s 4 ) - n , a(s 4 ) - 1 e  s 2

(111-157)
for all s 2 , s 3  such that

0 < S 2 < Si

0 < s3 < s I

It follows Ineq. (111-157) that the left-hand side of Eq. (111-155)
is greater than the left-hand side of Eq. (111-156), and Ineq.
(111-150) then- follows simply by replacing (F (s4),(s4)8(s4 ))by
(Fn2) and (4)by n

Q.E.D.
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Theorem 11

Let (F 1 -,1 ,61 ) c D and e nn(Fl116 0 Ineq. (111-16)

is equivalent to the following: There is a neighborhood of the

function F1X on NR(O)(N(Fl)),a neighborhood of n (N(n)), and

a neighborhood of B,(N(q])), such that for all homeomorphisms

(on N R(0)) fM) c N(F1 ), and all a eO1

J e(F(X),n(X),a(X)) dV > e(FJO,r, 1 ) V (111-158)

N R(0)

where (i) f(X) = F IX on N R (0), and

F(X = Vf(X) on N R(O)

(ii) f (WX)-al) dV -0

+r 1(ean( ,1 ) for all XeNR(O)

(iv) (f(X),n(X),a(X)) 0 (F1I X~n1,~1) on NR(O)

Proof

It follows Ineq. (111-16) that

e1 (F(X),n(X),B(X)) dV > V e(Fn 1 ) (111-159)

where (f(X),n(X),a(X)) on NRC(0) are restricted as follows

(i) f(X) =F 1X on 3N R(0), and

FMX = Vf(X) on NR(O)

(ii) f (8X)-a1 ) dV =0

N R(0)
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(iii) f (n(X)-n I ) dV = 0

NR(0)

(iv) (f(X),n(X),a(X)) * (FIX, 1 , a) on NR(O)

Since the restrictions for Ineq. (111-159) satisfy the

restrictions for Ineq. (111-16) it follows that

(111-16) = (111-159) (111-160)

Now let (f(X),n(X), (X)) on NR(0) be generalized to

satisfy the restrictions for Ineq. (111-16). Let

NR(Ovn(X) dV

NR(0)

2 v (X) dV (111-161)

N R(0)

Ineq. (111-16) is equivalent to the following:

f e(F(X) ,n(X), 8(X))-e(Fl,n11 2 d
dV

NR(0)

+ V(e(Fl,n 2 ,8 2 )-e(Fln ,8 1)) > 0 (111-162)

where (i) f(X) = F1X on aNR(0), and

F(X) = Vf(X)

(ii) f ((x)-$ 2) dV = 0N R(O)

(iii) f (n(X)-n 2 ) dV = 0

N5R(O)
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(iv) (f(X),n(X),6(X)) #(FIX, l,a I ) on NR(0)

(v) 8(F 1 , I , 61 ) (n 2 -nl)+ tr T(F I , )',I , ad (a2-B) 0

Note that restriction (v) follows Eqs. (111-161) and restriction

(ii) for Ineq. (111-16). Note also that the restrictions of

n(X),a(X) on NR(0) to N(nl),N( I) and Eq. (111-161) insure that

(F I n2 ,a,) c D

(f(X),n(X),8(X)) = (FIX,n2,g2) on NR(0) satisfies the

restrictions to Ineq. (111-159). It follows Ineq. (111-159)

that

(Fl~n2, 2)-e(Fl,rhl,a1) > 0 (111-163)

Also since (F1,12,B2) c D it follows Ineq. (111-159) that

f e(F(X),n(X), (X))-e(Fl,n2, 2 ) dV > 0 (111-164)

N R(0)

It follows Ineq. (111-163), (111-164), (111-162) that

(111-159) = (111-16) (111-165)

Then it follows Eqs. (111-160), (111-165) that

(III-16) 4=> (111-159) (111-166)

Now let (f(X),n(X),O(X)) on NR(0) satisfy the restrictions

for Ineq. (111-159), and define n(X) on NR(0) as follows:

- ~W) n lie ) (tr [F(X)-Fe F]f(Flnl, )(X) =,iB (t e1)(FF] ln 1

+ tr I )) (111-167)

where it is assumed
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enn(Flnl,1) 0 (111-168)

Let B represent a constant second-order tensor on NR(O).

It follows Green's transformation that

tr B(F(X)-F I) dV = tr B(f(X)-Fl(X)) dA (111-169)

NR(O) 3NR(O)

It follows Eq. (111-169) and restriction (i) for Ineq. (111-159)

that

tr B f (F(X)-F I) dV = 0 (111-170)

NR(0)

The integral above is a tensor, and Eq. (111-170) states

that it is orthogonal to B But B was chosen arbitrarily.

The only second-order tensor which is orthogonal to all second-

order tensors is the zero tensor. It follows that

restriction (i) f (F(X)-FI) dV = 0 (111-171)

NR(0)

Now integrate Eq. (111-167) on NR(O) and it follows Eq. (111-171)

and restriction (ii) for Ineq. (111-159) that

f (n(X)-n I) dV = 0 (111-172)

NR(0)

It follows Eq. (111-172) that rj(X) on NR(0) defined by Eq.

(111-167) satisfies restriction (iii). In other words, for

Ineq. (111-159)
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restrictions (i), (ii)
restriction (iii) (111-173)

and Eq. (111-167)

It follows Ineq. (111-159) that for any f(X), (X) satisfying

restrictions (i), (ii) and n(X) from Eq. (111-167)

f (e(F(X),r1(X), 3 X)-e(F1 ,l, 1)) dV > 0 (111-174)

NR(O)

It follows Theorem 10 that

e(F(X), n(X), 6(X))-e(F I , ql' BI)-trLTR T (F' 1,rl l 1)(F(X)-FI)
PR

-O(Fl1,r l , l ) (-n(x ) - nl ) - t r T T(Fl, , 8 1a)(8(X)- I) >

e(FX)q(X,8X))e( l~q ,8 ) -tr R R (FI'I )(F(X)-F )

-9(Fl'n I, 1 )(n(X)-nI)-tr-T (Fl ,nI ,81 )(B(X)-a 1 ) (111-175)

for all X e NR(0), and (X) # r(X)

Now integrate Ineq. (111-175) on NR(0), and it follows restrictions

(ii), (iii) and Eqs. (111-171), (111-172) that

f (e(F(X),fn(X),B(X))-e(F1 1,8 1)) dV >

NR(0)
dV (111-176)

(e(F(X), (X),$8(X)) -e (FI, i, (111176

NR (0)

for all n(X) (X) on NR(O)

It follows Eqs. (111-176), (111-174) that Ineq. (111-159) for

(X) on NR(0) is both necessary and sufficient. In other words
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Ineq. (111-159) = Ineq. (111-159)

with restrictions with restriction (iii)

(i) (ii) (iii) (iv) replaced by Eq. (111-167) (111-177)

Theorem 11 follows Eqs. (111-166), (111-177).

Q.E.D.

Theorem 12

Let (FI l ,a1 )ED , a* 0 a,, and L, denote the straight

path in (n, )-space, through (n., ) = (nl, 1 ), which is tangent

to an adiabat for (F, (F l , 1 , 1 ) , i.e.

E ~ ~ - 1 T

L E:( $1 tr T(Fl
6( 1i ,~l 61))(88

(111-178)

For any neighborhood of a1 (N(a1 )) there is a neighborhood

of FI(N(FI)) such that for any F2EN(FI), F2 # Fl, and
8*cN( 1 ), a* # a, there is a pair (n2, 2)sL8* such that

2 2 I  1F2-F11 n2-'i,8a2-81 2(F ll,) <1D

(111-179)

for all (n,B)cL , (
and the equality holds only if

Also

f o2j _e ,2.Y1 + D (F,nl I e(F1 ,n ) 0

0 02-eIJ (111-180)
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2 2( 6
D F1,r2r a2a - F 6 1, nl, l/ D F 2-Fl ~~ e(F1,r )

2D'2~'2 ,2 1,0 f IieF1,Y

(111-181)

D2 e
D 2 F1 ,n-n19 6-81 e(F111 1,Y 2 FP2n1)_I (F n,,

+ (a-1)2 D~n a 6 (
01 2-l' 2-

(111-182)

where a is uniquely defined by

Mi B_ = a(B 2-el) fo (B# 0

-,1'l = D F2-F1,0,0 (F 5n,6 1~a) (111-183)

if Mi (B 2-61) 0

Proof

Expand the second-directional derivative:

2 A2 2 0F 6

+ Do,,,_ e(Flpnlp,) + 2 f 0~FT I {n1nl (111-184)
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It follows Ineq. (111-80) that

2D2 , e(FInl, I) > 0 (111-185)

for -Il (n,0)cL* (, o) 0 (n 1 , 81 )

Let (n2,B 2 ) # (nl, 1 ) satisfy the following:

F FF 0
0 e 2-111 + Oln2 nlB2_el e(F1 ,11 ,Y1 ) 0 (111-186)
0 B2-aI

where (n2, 2 ) EL.

Let aER;(n,B) on L,. may be represented as follows:

n = 7i + a(n2 -nl)

= al + a(B 2 -eI) (111-187)

where aeR, and the pair (n2 ,$2 ) satisfies Eq. (111-186).

It follows Eq. (111-187),(111-186) that

2-F 10

= 0t 0 F 2j T-T + D (Fln,-880, a-B Bi

rF2- F o0:'t:lt +2°=°..a4 e 12-l +a DO, n"2_n l 6I(F1, nl, 81 )  (111-188)

0 - '082- $ L

and a - 1 is a root for Eq. (111-188). If

D 2  S(Flnlll) > 0
0,1n2-rll, 2-81
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it follows Eqs. (111-186), (111-188) that

0F2  F e[ "12-" = Don-la- eF111 0 (111-189)

0o L L - 21

and the root for Eq. (111-188) -i.e. a = 1 - is unique.

If D nt B 2 (F1,n1 ,al) =0 it follows Eqs. (111-186),

(111-188) that

(0 a e[2 ] f2-nfl -D Ol'-1,B'a (Fvn1,B11 0 (111-190)

0 B~2 -a1

and the root for Eq. (111-188) is not unioue. It follows Eqs.

(111-187), (111-189), (111-190) that Eq. (111-184) has the following

representation:

+ a~-) Ol2nl(- ff ,rl,,B) (111-191)

and

22
j2- F ln 2- 1 2- 1  (F 1,n1 ,01) D F-FOO (ln a

- D ( -ia)(111-192)

It follows Eq. (111-191), (111-192) that

Dj 2FOI)JB a e(F 1 ,T11 ,61) -D2- F a2n#28 (F,n,Tv 1)

+ (a-i)2 D O 2 -n, 2..8 e(F11 ,n1.81 ) (111-193)
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Equation (111-180) follows Eq. (111-186); Eq. (111-181) follows

Eq. (111-192); Eq. (111-182) follows Eq. (111-193); Eq. (111-183)

is trivial; Ineq. (111-179) follows Eq. (111-182) easily.

Q.E.D.

Theorem 13

Let (F I, 1,81) D and F2 in some neighborhood of F1
There is a pair (i2,82) and a neighborhood (N(nl,B )) such that

2) (nl' I

2  2-^
D F2_F I T2-rl,8T2- 1 e(F 1,1,61) < D 2 -F e(Flnl,8 1 )

(111-194)

for all (n,8)EN(nl,8I) such that

(i) e1 (n-n I ) + tr T T(8-l= 0

Proof

The proof of this theorem follows theorem 12. Ineq.

(111-179) holds for each L*. It follows Eq. (111-186) and
Eq. (III-ll)l that the vector (n2-nl1, 2-81 ) is bounded if

(F2 -F1) is bounded for each LB.. Also the map F2 -FI --

n2-rl,82-81  is linear. Since the vector (F2-Fln 2-nl,8 2-81 )
is bounded, it follows Eq. (I1-Il) that

DF2 Fl9 i 2 .rl,8 2 81 (Finl,8I ) is bounded for any L

(111-195)
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Now hold F2 fixed and consider the value of the second

directional derivative for different L ,'s . It follows Eq.

(111-190) that there must be a infinum for the values; let
L* and (2,Y correspond to the infinum. It follows that

2  2DF2- F ,2-"1216 e(F ,rll'Bl) < DF2.Fl~2n,28 e(Fl'nrl'81)

for any L (111-196)

Ineq. (111-194) follows Ineas. (111-196) and (111-179).

Q.E.D.

Theorem 14

The caloric equation of state, Eq. (111-10)I , is invertible
in n and the inverse is differentiable. A state (F,, ) is
uniquely characterized by the triplet (F,e, 6), where e is the
value of the internal energy density which corresponds to the
state (F,nj). Let Q(F,e,t) represent the inverse function:

n(F,e,8) is the inverse of e(F, ,S) on D,

Q(F,e,8) is differentiable on the inverse (111-197)

of D, and the map

(F, , )-->(F,e, 8) is a diffeomorphism on D (111-198)

Proof

Let (F1 ,n1 ,8I)eD Because D is open it follows that there
are neighborhoods of (Fl,nl,a1), N(Fl,nl,81), such that N(F1 ,nI ,
O1)CD. Let (F1 ,)1 ,81) e-l-1 , el . It follows Eqs. (111-18)2 ,
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(III11-)1,3 that

e(F,n,B) is differentiable, strictly increasing, and

convex in n (111-199)

Therefore for (F,n) = (F l 1,n l )

ln e differentiable, strictly

increasing, and convex on D (111-200)

Since the inverse was defined for an arbitrary pair (F1 ,81),

the definition may be extended onto the image of D:

= (F,e, ) on the image

of D
or (F,e,B) - > n (111-201)

Choose a neighborhood of %I, f(nl):

f(ol) = {PIrL < n <

where nL < nI < nU (111-202)

Define eL, eU as follows:

eL = e(F,nL,'o)

on D

eU = e(F,T)u,) (111-203)

It follows the continuity of e(F,n,B) and Eq. (111-202) that
a neighborhood of (F1,81 ), N(Fl,al) exists such that

e(F,nL,8) < e
(F.8)cN(F I 81)~) < e, (111-204)

e(F,nu,B) > e,
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Let e min. e max. represent the inf of e L and the sup

of e U respectively:

e min. = inf e(F, rlL'a)
on N(F1,61) (111-205)

e max = sup e(F,nU,)I

It follows Eq. (111-205), Ineq. (111-204) that

emin. <el <emax. (111-206)

Define a neighborhood of e 1  as follows:

N(el) = {elemin <e < emax.} (111-207)

It follows the above construction that

(F,e,a) I(F,a)sN(Fl1 j),eE:N(9) -*

In other words for any neighborhood of na neighborhood

of (Fl,el,al ) can be found such that the image of NF~le c(n)
It follows that

(F,e,B) - rtis continuous on the image

of D .(111-209)

It follows Eq. (111-209) easily that

(Fe,s) - (F,n,a) is continuous on the image

of D .(111-210)

Now assume n(F,e,s) is differentiable and derive the

partial derivatives by implicit differentiation:
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;F(Fe, ) = -

1e (F, ' ) ( (F,e, ),B)

r)e(Fe, a)=
e P,'(F, e,a), 6)

e (F , n(F, n (F, e, 5) 6
-- - ( F-(F^- - - (111-211)8(F'e'e B)(F,nA(F,e, 8),8)

It follows Ineq.(III-1l) 3 , Eqs.(III-210), (III1-l)1 that the

right-hand sides of Eq. (111-211) are bounded and continuous on

the image of D Therefore Eqs. (III-211) define the partial

derivatives of i (F,e,a) and it follows Eq. (111-210) that

(F,e, ) -- (F,n, ) is diffeomorpic on the image

of D (111-212)

Existence of the inverse follows Eq. (111-201); its continuity

follows Eq. (111-209); finally its differentiability follows
Eq. (111-211).

Q.E.D.

Some topological properties of D follow directly
Theorems 4 and 13.

Corollary

The maps

( F n ) -- * (F , 8 , B) <- - * (F , e , 6)(111-2 13)

are homeomorphic on D Therefore D preserves its topological

properties under these maps. Therefore a state in D is
completely characterized by any one of the triplets - (F,n,8)

(F,e, ), or (F,e,$) All of the state variables may be represented
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as functions of (F,e,$) or (F,e,B) in addition to (F,n,e)

The following notation will be used for these representations:

e = e(F, 0

TR = TR(F,e,B) on D (111-214)

T = (F,e, )

n = (F,e,a)
n = n(F,e,)

TR = TR(F,e,)
on D (111-215)

e = (F,e,B)

T = i(F,e,B)

Theorem 15

Let (F1 ,n1 ,81 )cD, F2 # F1  Let (T2,T2) and N(nI , 1)

correspond to F2 according to theorem 13. Let (F21n, )

represent any triplet in D such that LI(F1 ,I,1 B1 ), (F2,n, B)]

is an adiabatic tangent at (FInIB 1). Then there is a neighbor-

hood of (F1 ,n1 ,BI)(N(F I n1 ,BI)) such that for all states

(F 2 1,n ) :N (Fl nIj I) , which do not correspond to theorem 13,

e(F2 ,n#,) > e(F2,n2,82) (111-216)
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Proof

Let N(FenBI)sD and (F2,n2,T2),(F2,nB) N(Fnl, 1) ,

F2 j F1 , according to the prescription of the above theorem.

It follows theorem 13 that

D2 2
2F e(Fl,n 1 , 81 ) > D2F 2 F

2 1~ ' 1 2 1'21'21I

(111-217)

Let (F(s),n(s), (s)) represent the state and e(s)

represent the internal energy density on L (FI, I, I)(F2,n,)]

and (F(s),(s),T(s)), e(s) represent similar parameters on

L F(F 2 , where s is the path parameter:

(F(s),n(s),S(s)) = (l-s)(Fl,nl, I ) + s(F2, ,8)

e(s) = e(F(s),n(s), (s)) and

(F(s),ij(s),-(s)) = (1-s)(F,n, 1 ) + s(F

e(s) = e(F(s),(s),T(s)) (II-218)

for 0 < s < 1

It follows Eq. (1II1-1) I , (111-18) and Taylor's formula

that there is a neighborhood of zero (N(O)) such that for

seN(0)
1_ TRT(FI ' i(F_)

e(s)-e(0) = str 1

+ F2-Fenn I, - (FlnISl)+... (111-219)

I^T

i(s)-e(0) str -L TR (Fl' I 1 ) (F2"FI)

s2 D2

7 _ e(F,,1 ) + ' '

- . . , .. _ 2 I I, . ' ' . . . . . . . . . _ . _ .. . . . - - . . ". . ..7 3. . . .



or

2 2

+ (111-220)

for all scN(0)

Ineq. (111-216) follows easily Eqs. (111-217), (111-220).

Q.E.D.
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IV. GLOBAL STABILITY

In this report "global stability" will refer to stability

of a finite body (B) . Two types of global stability will

be defined and analyzed. The definitions are generalizations of

the definitions given by Coleman and Noll9  In the following,

the concept of a global state and a neighborhood will be used.

Also the caloric equation of state, Eq. (III-10)I , and the

stress temperature and substate relations, Eqs. (111-18)1 ,2

and (111-35), are assumed.

Definition of Global State

A "global state" x of a body (B) is a configura-

tion x of B (i.e., x = x(X) ), an entropy distribution of

B (i.e., q =(X) ), and a substate distribution of B (i.e.,

= (X ) ).

A neighborhood in global state-space is defined by the

following metric:

SUP .8(x~,8,{~n6*)= XSB{I X-~)

+ IF*- (X)F(X)-II + Hn*-nl + 1j*-I(x) X(X) - I (IV-l)

Note in the above definition of the metric that the

rotation tensor of F* is not restricted.

Corollary 1:

The restriction to a neighborhood in global state-space

also restricts each local state to a neighborhood in state-

space, i.e.,

x neighborhood of {x,n,8} (F*(X),n*(X),6*(X))

E neighborhood of (F(X),n(X),B(X)) for each XEB

(IV-2)
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One other concept will be required for the definition.

Consider the external supply of heat at X

q(X) = O(X)A(X) + tr(Tr(x)T(X)) (IV-3)

If this equation is integrated on a path while holding the

temperature and substate tension fixed, the result has the

appearance of a potential for heating.

Aq(X) = e(F(X),n(X),$(X))(n*(X)-n(X))

+ tr r (F(X),n(X), (X))(6*(X)-a(X)) (IV-4)

If Aq(X) is divided by e(X) the result has the appearance

of entropy supply, which will be used for the definitions of

global stability.

Definition of the Virtual Supply of Entropy (h*)

The virtual supply of entropy is defined by the following

equation:

h* = h*(X) E (n*(X)-n(X)) + tr TT(F(X)1(X).(X))(*( X) - (x))e(F(X), n(X), a(X))

(Iv-5)

Definition of Global Adiabatic Stability (GAS)

Let {x,n,0 be a state of B and let E be the total

internal energy corresponding to the state , } The

state {x,n,$} is an "adiabatically stable state of B " if

and only if there is a neighborhood of {x,n, } such that

every global state {x,n*,$*} in the neighborhood with the same

configuration and constrained to zero virtual entropy supply

has a greater total internal energy than the global state

fx
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B B

(IV -6)
where

(1) x~n*0*} neighborhood of {xc,n,5}

(ii) fh*(X)d 0

A shorthand notation for the above property is {n,}of

B is GAS.

Theorem 1

A necessary condition for {x,n,a} of B is GAS is

that the temperature is uniform on B , i.e.,

e = 6(F(X),n(X),a(X)) is independent of X£B (IV-7)

Proof

The following variational statement is equivalent to GAS
of fxn of B

f S(1(X), *(X) ,a*(X))dM is locally-minimum
B

for {Xi,ri*,$*} =f~v~ I-8

where the comparison states are constrained by

! *(X)+tr T Fx),T(x)$a(x)) 6*(X3 dM= constant (IV-9)

It follows thtthe first variation of
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f (F(X),l*(X), *(X) X [f*(X) +tr d((),lXMX)

(TV-b0)

subject to restriction (IV-9) vanishes for (n*(X),a*(X))

-(fl(X), (X)) .Here X is a constant Lagrange multiplier.

2
It follows Eqs. (111-18) ,(111-35) that the first

variation of

-tr J (F(X),n(X), (X))a*(X) for XeB (IV-ll)

vanishes for (n*(X), *(X)) = (n(X), (X)) but for unrestricted

variations.

Integrate (IV-ll) over B and subtract the result from

(IV-1O), and it follows that the first variation of

fO(F(X),l(X),s(X)) - X)[f*(X) + tr^ * d

BI

(IV-12)

vanishes for (n*(X),a*(X)) = (n(X),a(X)) and the variations

are constrained by Eq. (IV-9).

Setting the first variation of (IV-12) to zero it follows

that

f f(6(F(X),n(X),$(X)) - X) (X)dM = 0 (IV-13)

B

where 4(X) is any continuous function on B such that

B
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The only functions on B which are orthogonal to all O(X)'s

are constants, i.e., 6(F(X),n(X),a(X)) - X is a constant.

But since X itself is constant, it follows that the

temperature must be constant. Q.E.D.

Definition of Scaled Global State

Let {x,n,8} be a global state of B with other

properties TR(X),e(X),T(X), and e(X) Let B represent

a geometrically similar body with scale a - i.e., there is a
map from the reference configuration of B onto the reference

configuration of B

B a

where aeR, a > 0 (IV-14)

Let R represent the material coordinates of F , then

X = aX (IV-15)

Also all other properties of the material (i.e. stress,

temperature, etc.) at X are equal to the same properties

of B at X

Let {x,fl,T} represent a global state of B The

state {x, ,T} is called a scaled global state if

i(R) = ax(X)

= n(X)

= B(X) (IV-16)

and

TR(X) = TR(X)
()=e (x)

(IV-17)
T(R) T (X)
W(X) e e(X

etc.
79



Of course it is assumed the two bodies are of the same

constitution - i.e.,they obey the same caloric equation of

state. Then Eqs. (IV-17) follow Eqs. (IV-16).

Theorem 2

Let {x,n,a} be a global state of B and let {Ix,-n,} of

be a scaled global state. Then

{x,n,a} of B {xiT,T} of F=>(IV-18)

is GAS is GAS

Proof

Let Ineq. (IV-6) represent the property for B It

follows implicit differentiation of Eq. (IV-16)1 that

F(X) = F(X) (IV-19)

and it follows Eq. (IV-15) that

dM = a3 dM (IV-20)

Let the comparison states be scaled:

* = Rn*(x)

X *(X) (IV-21)

Substitute Eqs. (IV-16), (IV-19), (IV-20), (IV-21) into Ineq.

(IV-6) and it follows that

dR >

8 d (IV-22)
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(i) {,.*}l c neighborhood of fx, ,

(ii) f() d1 = 0

(iii) {jj* *} # {,Th,8}-

Every comparison state {x,n*,8*} for B has an image

{f,T*,T*} for B by Eq. (IV-21) and every comparison state

{iT*,8"} for F has an inverse image {x,n*,B*} for B It

follows that

Ineq. (IV-22)q =i; Inea. (IV-6) (IV-23)

The theorem follows Eq. (IV-23). Q.E.D.

Theorem 3

Let {x,,01 of B be uniform - i.e.,F,n, are uniform

on B - and let {x,n,8} of F represent a uniform state on

R with th e same values of F,n,. Also F is of the same

constitution as B but F is not related to B through a

simple geometric scaling. Then

uniform {x,n, } of B uniform {xr1,6} of B

is GAS is GAS (IV-24)

Proof

It follows Ineq. (IV-6) that the test for {x,n,8} of B is

f (F,n*(X),9*(X)) dM > M e(F,n,$) (IV-25)

B
(i) {x,n*,8*} c neighborhood of {x,n,8)

(ii) fh*(X) dM = 0

B
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where M f d2 .
B

Now let F be a subbody of B

XEB t XB, X/aB (IV-26)

Choose comparison states for B which are zero on B-s, i.e.,

T*(X) = n

for XeB-B (IV-27)

The comparison states represented by Eq. (IV-27) are a

subset of the comparison states for Ineq. (IV-25). It follows

the substitution of Eq. (IV-27) into Ineq. (IV-25) that a

necessary condition for Ineq. (IV-25) is the following:

f (F, * (X)T* (X)) dm > M e^(F, r,(IV-28)

(i) {xi*,c* £ neighborhood of {xnB}

(ii) f F*(X) dm = 0

where f dm

Since it is a necessary condition it follows that

uniform.{x,n,8} of B uniform {x,n,$} of F

is GAS is GAS (IV-29)
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Now let B be a body of the same constitution as B and

scaled from B by a a

-- ,B(Iv-30)

Choose a > 0 large enough so that B is a subbody of B

XcB = XEB, X/aF (IV-31)

The scaling of uniform {c,n0,} of R to = retains the same

uniform triplet (F,qa). It follows theorem 2 that

uniform {x,n,6} of B uniform {x,n,$} of B

is GAS 4=C is GAS (IV-32)

Since B is a subbody of W the roles of B, R may be

replaced by =B, B respectively in Eq. (IV-29):

uniform {x,n,a} of B uniform {x,n,0} of B

is GAS is GAS (IV-33)

It follows Eqs. (IV-29), (IV-32), (IV-33) that

uniform {x,n,8} of B uniform {x,n,} of B
is GAS is GAS

uniform {x,n,a} of B (IV-34)

is GAS

The theorem (where 9 represents any body of equal constitution)
follows Eq. (IV-34). Q.E.D.
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Theorem 4

Let the triplet (F,n,a) represent a state, and let

{x,n,B} represent a uniform state of B which corresponds to

(F, n, ). Then

(F,n, )ED = uniform {x,n,6} of B

is GAS (IV-35)

where B is any body.

Proof

Let {x,n,a} of B be uniform. It follows theorem 3 that

any B may be chosen. Choose B to correspond to a spherical

neighborhood of 0 in E 3(NR(O)) It follows that Ineq. (IV-6)

for any B is equivalent to the following:

f a(F,n*(X),6*(X)) dm > M (F,q,a) (IV-36)

NR (0)

(i) {e*,B*} € neighborhood of {x,n,}

(ii) J h*(X) dm = 0

NR(O)

It follows Eq. (IV-l) that restriction (i) is equivalent to

n*(X) N(n) and a*(X)EN(a) . Since 0 and r are uniform

it follows Eq. (IV-15) that restriction (ii) is equivalent to

RR

R (n(X)n)+ tr T(S*(X)-B) dM-- 0 .Also since pR is

uniform, Ineq. (IV-36) has the following equivalent representation:
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f e(F,n*(X),a*(X)) dV > V e(F,n,e) (IV-37)

NR

(i) Tl*(X) cN(n)

on NR(0)*(x) EN(M

(ii) j 6(n*(X)-n) + tr TT (*(X)-S) dV = 0

R (0)

(iii) either n*(X) # n or a*(X) on NR(O)

The comparison states for Ineq. (IV-37) are a subset of

those for Ineq. (111-16). It follows easily upon comparing

Ineqs. (111-16) and (IV-37) that

Ineq. (111-16) -> Ineq. (IV-37) , or

(F,n,B)e D t uniform {x,n,6} of NR(O) (IV-38)

is GAS

The theorem follows Eq. (IV-38) and theorem 3. Q.E.D.

Theorem 5

The substate tension (T) is the "force of constrain"

necessary to prevent spontanious substate processes.

Proof

Consider uniform {x,n,s} of B which is GAS. Restrict

the comparison states so that n*(X) = n and f( *(X)- )dm = 0.

It follows Ineq. (IV-6) that B

fe(F,,-B* (X)-e(F,Tn,a) dM > 0 (IV-39)

B
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where

(i) {x,nB*}e neighborhood of {x,n,B}

(ii) f (*(X)-8) dM = 0

B

Now multiply restriction (ii) by a constant Lagrange multiplier

(X) and add to the above integral:

B [(F,n,B*(X)) - (F,n,B) + tr X(B*(X)-6)]dM > 0 (IV-40)
B

where restriction (ii) still applies.

T
Now if A is chosen equal to -T , it can be proven

that Ineq. (IV-40) holds independent of restriction (ii).

Following concepts in classical mechanics, T is

interpreted as the "force-of-constraint" necessary to insure

the persistence of B Q.E.D.

One type of global mechanical stability will be

discussed, but first certain conditions of mechanical equilib-

rium will be reviewed.

Definition of Mechanical Equilibrium

A state {x,n,B} of B is a state of mechanical equilibrium

if the stress (TR(X) H TR(F(X),n(X),a(X)) corresponding to

{x,n,B} satisfies the following equations:

DIV TR(X) + PRb(X) = 0
on B (IV-41)

TR(X)F(x) = F(X)TR T(X)

where b(X) is a body force field and DIV is computed

relative to the material coordinates.
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Theorem 6

{x,ri,0 of B is a state of mechanical equilibrium is
equivalent to the following:

f tr _L j TX(F*(X)-F(X))dM
B PR

f f( *(X) (X) ) ' (X) d +
S B

(IV-42)

where x* £^*(X) is any differentiable configuration of
B , and S is the surface of B

Proof

Multiply Eq. (IV-41)1 by c*(X)...(X) and integrate over
B .

f ( *(X)- (X))DIV TR(X)dv + f (*(X)-X^(X))b(X)dM 0
B B (IV-43)

Green's theorem gives

B( *(x)- (X))DIV T R(X)dv = ~*X~()T(X)dA

B S

- j'tr .R1 T(X)(F*(X)-F(X))dM (IV-44)

Eq. (IV-42) follows easily Eqs. (IV-43) and (IV-44). O.E.D.

Definition of Global Adiabatic Mechanical Stability with
Fixed Boundary

A state fx^,ri,O of B is called GAMSFB if and only if
(a.) {Xna of B is a state of mechanical equilibrium

for zero body force,
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(b.) the temperature is uniform, and

kc.) there is a neighborhood of x such that for

all {x*,n*,B*} in the neighborhood

f (*()T*() *X)dM > f F()-X,6) dM
B B

(i) h*(X) dM = 0

B

(ii) x*(X) = (X), for Xc B

(iii) {x*,ri*, *} j {x,r,$} (IV-45)

Theorem 7

{x,n,8} of B - {x,rB} of B (IV-46)

is GAMSFB is GAS

Proof

The comparison states for Ineq. (IV-6) are a subset of

those for Ineq (IV-37). It follows easily that

Ineq. (IV-37) =--- Ineq. (IV-6) (IV-47)

The theorem follows Eq. (IV-47). Q.E.D.

Theorem 8

Let {x,n,B} be a global state of B and let {x, ,<}

of B be a scaled global state. Then

{ of B ==> { , ,T} of R (IV-48)

is GAMSFB is GAMSFB

Proof

Let {x,rI,$} of B be GAMSFB. It follows the definition
of GAMSFB and theorem 6 that the following are necessary and

sufficient.
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B 1R TRT(X) (F*(X)-F(X)) dM
P

- f(X*(x)-(X)) TR(X) dA

S
(IV-49)

and

>f eF(X.n(X>.B(X)) dM (IV-50)

B B

M) fh*(X) dM - 0

B

(ii) i*(X) = i(X) for XcBB

It follows Eq. (IV-15) and implicit differentiation of

Eqs. (IV-16)1 , (IV-17)1 that

3B a

d- a 3 dM

r(X) - F(X)

T RT(X) - V TR(X) (IV-51)

It follows Eqs. (IV-51)3'4 , (IV-17)1 and Eq. (IV-41) for zero

body force that

{x,n,$) of B is a state - {x,W,W} of I is a state

of mechanical equilibrium of mechanical equilibrium

(IV-52)
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Choose comparison states for 19 as follows:

x*(X) -ax*(X)

-(X 0*(X) (IV-53)

Substitute Eqs. (IV-53), (IV-51) 3 . (IV-16) 2 ,3 , (IV-17)
into Ineq. (IV-50) and it follows Eq. (IV-51)1'2 that

dH > f rX, X)J-(X)) dM (IV-54)

M(i)(R d - 0

(ii) i*(X) - i(X for i c I

Every comparison state {x*,n*,O*) for B has an image

* - i~ii,~*1for by Eq. (IV-52) and every comparison state
(E*,V *,P) for has an inverse image {i,*~}for B

It follows that

Ineq. (IV-54) **- Ineq. (IV-50) - Ineq. (IV-45)

(IV- 55)

The theorem follows Eq. (IV-52), (IV-55) and the definition

of GAMSFB.
Q.E.D.

Theorem 9

Let {iA,n,o) of B be uniform and let {X,.n.B} of

represent a uniform state on Iwith the same values of
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F~,O Also is of the same constitution as B but I
is not related to B through a simple geometric scaling. Then

uniform {x,ri,s) of B uniform {x,rn,B} of

is GAMFB is GAMSFB (IV-56)

Proof

Body forces are assumed zero. It follows easily that

uniform states are states of mechanical equilibrium.

It follows Ineq. (IV-45) that the test of {Xno Of
* B is

J (F*(X),n*(X),B*(X)) dM > M e"(F,iB,) (IV-57)
B

M(i)() M

B

(ii) i*(X) M (X for XcaB

-' ~~~~(iii) {*y*81''{~iB

where M - fdM
B

Let I be a subbody of S

xel -0 IcS, X03B (IV-58)

Choose comparison states for B which are zero on 3'i.e.

i*(X) im(X

i -M r for XcB-1! (IV-59)

T -X OWX
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These comparison states are a subset of the comparison

states for Ineq. (IV-57). It follows the substitution of Eq.

IV-59) into Ineq. (IV-57) that a necessary condition for Ineq.

(IV-57) is the following:

(r*(X), *(X),O*(X)dM > H e(F,n,S) (IV-60)

(i) f*(X) dM- 0

(ii) i*(X) - M(X) for XeI

(iii) {i*,i9*, *}i {x,rj,a) on

where R f f dM
B

Clearly Ineq. (IV-60) is the application of Ineq. (IV-45) to
.Since Ineq. (IV-60) is a necessary condition for Ineq.

(IV-57) it follows that

uniform {i,n,B) of B uniform {x,nB} of IF

is GAMSFB is GAMSFB (IV-61)

Now let ! be a body of the same constitution as B

and scaled from I by at

I B (IV-62)

Choose a > 0 large enough so that B is a subbody of
I.

XcB -, xcl, XaO (IV-63)

The scaling of uniform (i~r..} of I to I retains
the same uniform triplet (F,n.B). It follows theorem 8
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uniform {f,nB1 of uniform fi,in,o) of

is GAMSFB is GAMSFB (IV-64)

Since B is a subbody of I the roles of B, I may
be replaced by 1, B respectively in Eq. (IV-61):

unifo-n (i,n,s) of F uniform {i,n,o} of B

is GAMSFB is GAMSFB (IV-65)

It follows Eqs. (IV-61), (IV-64), (IV-65) that

uniform {x,n,} of B uniform (x,n,o} of I

is GAMSFB is GAMSFB

uniform {X,n,B} of
(IV-66)

is GAMSFB

The theorem (where I represents any body of equal constitution)

follows Eq. (IV-66) . Q.E.D.

Theorem 10

Let the triplet (F,n,s) correspond to a uniform

{i,n,s} of B . Then

(F,n,) D4-o uniform {,in,B} of B

is GAMSFB (IV-67)
where B is any body.

Proof

Let {x,n,1) of B be uniform. It follows theorem 9 that
the property GAMSFB is independent of the body. Choose B to
correspond to a spherical neighborhood of 0 in E3 (NR(O)).
It follows that Ineq. (IV-45) for any B is equivalent to the

following:
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f (F*(X).n*(X),O*(X) dM > M e"(F,ri,B) (IV-68)

NR(O)

Mi J 6i*(X) dM - 0
NR( 0)

(ii) i*(X) - X (X) for XOaNR(O)

It follows Eq. (IV-l) that the restriction of (x*,rI*,B*1

to a neighborhood of {x,n,ol is equivalent to X(~NxAX)
F*(X)cN(F), n*(X)cN(n), 0*(X)eN(S) on B . Since e,T are

uniform, it follows Eq. (IV-15) that restriction (i) is

equivalent to f e(ln*(X)-n) + tr -rT (O*(X)-O) dM - 0

N R( 0)

Also since PRis uniform Ineq. (IV-67) has the following

equivalent representation:

J (F*(X).n*(X),O*(X)) dV > V i(F,ri,o) (IV-69)

NR(

Mi J e (yI*(X)-..y) + tr rA0*X..8) dV -0

(ii) i*(X) - x^(X) for XcaNR(O)

(iii) either F*(X) 0 F or ri*(X) n or B*(X) 0

on NR(O)

and

F*(X) eI(F) onN(0

n*(X) CN(B)
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In spite of notational differences for the neighborhoods, it

is clear that Ineq. (IV-69) is equivalent to Ineq. (111-16):

Ineq. (IV-68) Ineq. (111-16) (IV-70)

A uniform state is a state of mechanical equilibrium. It
follows the definition of GAMSFB that for a uniform state

Ineq (IV-69) o- GAMSFB (IV-71)
for a uniform state

The theorem follows Eqs. (IV-70), (IV-71)
Q.E.D.

Theorem 10 shows clearly an important property of an

equilibrium state. Only triplets (F,n,B) in D may correspond
to stable (i.e. GAMSFB) uniform global states.

iv9
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V. CONCLUDING REMARKS

Obviously the postulated theory is based on classical
developments of continuum mechanics and thermal statics.
One of the most important properties assigned to an equilibrium
state is the stability property - Ineq. (111-16). It has been
shown in Section IV that the stability property is equivalent
to the static Global Adiabatic Mechanical Stability with Fixed
Boundary. The equivalence is reassuring; this property of
static global stability is what was sought for the theory of

equilibrium states.

A previous attempt at the theory was made by this author.(I0 )

The stability property assigned in that attempt, it is clear
only now, is necessary but not sufficient for Ineq. (111-16).
It follows that more predictive capability can be expected of
this theory than was possible with the previous version.

The development presented in this report falls far short
of that presented previously (10)in several respects. There
hasn't been time to modify all of the previous development
consistent with the theory reported here, but it appears that

* most of that work will hold for the present theory.

There are additional developments which further characterize
the equilibrium region. Characteristic states (e.g. natural
states and ultrastable states) and state functions (e.g. natural
state internal energy density, isentropic recoverable internal
energy density, and isothermal recoverable internal energy
density) may be defined, which are useful in the further
analysis. There are also other kinds of global stability
which may be defined (global mechanical stability for fixed
tractions - adiabatic and isothermal), and associated subsets
of equilibrium state-space may be found. For the description
of processes some ideas are available. An equilibrium process

may be defined Jointly with an activation criterion. The
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equilibrium process has similarity to the quasistatic process

for classical thermodynamics, and the activation criterion

has similarity to yield criterion and flow laws for the theory

of plasticity. The intent in this theory is to define the

activation criterion in terms of the properties of equilibrium
state-space. In other words, given a caloric equation of

state as a function of (F,n,8), everything about equilibrium
state-space and equilibrium processes follows.
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